Yksisuuntainen varianssianalyysi

Päivitetty 25.4.2019.

Varianssianalyysi on lähinnä kokeellisissa tutkimusasetelmissa käytettävä menetelmä. Varianssianalyysillä voin testata onko ryhmien (kolme tai useampia ryhmiä) keskiarvojen välillä merkitseviä eroja.

Esimerkki. Hiljakkoin työllistetyt 32 vastavalmistunutta jaetaan satunnaisesti neljään erilaiseen myyntikoulutusohjelmaan. Kuukauden koulutuksen jälkeen koulutetuille järjestetään testi, jonka pistemäärät ovat:

Onko koutusohjelmien välillä eroja? Voin tarkastella asiaa alustavasti kaavion avulla. Laadin Excelissä Scatter (Piste) -kaavion, jonka jälkeen valitsin Design (Rakenne) -välilehdeltä Switch Row/Column (Vaihda rivi tai sarake):

Huomautus: Jos ryhmien koot ovat suurempia, niin yllä olevan kaltainen kaavio ei ole havainnollinen, koska pisteet menevät liikaa päällekkäin. Vaihtoehtoisesti voin laatia viivakaavion ryhmien keskiarvoista. Isompien ryhmien kohdalla ruutu- ja janakaavio eli boxplot on havainnollinen.

Kaavion perusteella kolutusohjelmien välillä näyttää olevan eroja. Kaaviossa havaittavat erot voivat kuitenkin johtua satunnaisvaihtelusta. Varianssianalyysin avulla voin selvittää ovatko erot merkitseviä.

Excelin analyysityökalujen avulla voin laskea varianssianalyysin. Jos en ole aiemmin ottanut analyysityökaluja käyttöön, niin voit tehdä sen seuraavasti:

  • Valitsen File – Options (Tiedosto – Asetukset).
  • Valitsen Add Ins (Apuohjelmat) ja valitsen alhaalta Manage (Hallinta) -ruudusta Excel Add Ins (Excel-apuohjelmat).
  • Valitsen Go (Siirry).
  • Valitsen luettelosta Analysis Toolpak (Analyysityökalut) ja valitsen OK.
  • Tämän jälkeen löydän Data (Tiedot) -välilehdeltä analyysityökalut (Data Analysis).

Analyysityökaluista löydän Anova: Single Factor (Anova: yksisuuntainen). Täytän Anova-ikkunaan syöttöalueen (Input Range). Syöttöalueeksi valitsen kaikki testipistemäärät otsikoineen (esimerkkini tapauksessa otsikot ovat 1,2,3,4). Varmistan, että Excel hakee tiedot sarakkeittain (Columns). Lisäksi määritän, että otsikot huomioidaan (Labels in First Row).

Excelin laskemat tulostaulukot näyttävät seuraavilta:

Ylemmästä taulukosta voin lukea eri koulutusohjelmiin liittyvien testipistemäärien keskiarvot ja varianssit (keskihajonnan toinen potenssi). Ensimmäisen koulutusohjelman keskiarvo (79) on selvästi muita korkeampi.

Alemmassa ANOVA-taulukossa vaihtelu on jaettu kahteen osaan: ryhmien väliseen vaihteluun (356,0417) ja ryhmien sisäiseen vaihteluun (84,34821). Mitä suurempi ryhmien välinen vaihtelu on ryhmien sisäiseen vaihteluun verrattuna, sitä merkitsevämpiä eroja ryhmien välillä on. Tämä testataan F-testillä, jonka p-arvon voin lukea taulukosta.

Esimerkin tapauksessa ryhmien välillä on merkiseviä eroja, koska p-arvo 0,014 on pienempi kuin 0,05.

On hyvä tutustua ANOVA-taulukon johtamiseen ja erityisesti vaihtelua mittaavien neliösummien (SS, sum of squares) laskemiseen. Voit tutustua ANOVA-taulukon johtamiseen Excel-tiedoston anovakaavat.xlsx avulla. Olen laskenut tiedostoon Excelin kaavoilla kaikki ANOVA-taulukossa oleva luvut.

Käyttöedellytykset

1. Vertailtavien ryhmien täytyy olla toisistaan riippumattomat.

2. Otoskeskiarvojen täytyy olla peräisin likimain normaalijakaumasta. Jos ryhmät ovat isoja (vähintään 30), niin normaalijakautuneisuus ei yleensä ole ongelma. Jos ryhmät ovat pieniä, voin arvioida normaalijakautuneisuutta otoksen arvojen jakauman perusteella (histogrammi, ruutu- ja janakaavio). Epäselvissä tapauksissa kannattaa testata normaalijakautuneisuus SPSS:llä. Ohjeet ruutu- ja janakaavion tekemiseen ja normaalijakautuneisuuden testaamiseen SPSS:llä löydät artikkelistani SPSS: Explore.

3. Ryhmien varianssien täytyy olla likimain saman suuruisia. Jos käytössä on klassinen koeasetelma, jossa tutkittavat on jaettu satunnaisesti koeryhmään ja vertailuryhmään, niin varianssien pitäisi olla likimain saman suuruisia. Varianssien yhtäsuuruuden tarkistamiseen sopii ruutu- ja janakaavio. Epäselvissä tapauksissa voin testata varianssien yhtäsuuruuden SPSS:n varianssianalyysin laskennan yhteydessä. Lue lisää artikkelistani SPSS: Yksisuuntainen varianssianalyysi.

Jos käyttöedellytykset eivät täyty, niin voin käyttää Kruskal-Wallis -testiä.

Parivertailut

Varianssianalyysi kertoo onko ryhmien keskiarvojen välillä merkitseviä eroja. Sen sijaan varianssianalyysi ei kerro minkä ryhmien välillä on merkitseviä eroja. Arvailuja voin tehdä ryhmien keskiarvojen ja kaavion perusteella. Esimerkkini tapauksessa ei ole vaikeaa arvata, että ainakin koulutusohjelmien 1 (keskiarvo 79)  ja 3 (keskiarvo 64,375) välillä on merkitsevä ero. Olisi kuitenkin hyvä tehdä parivertailuja myös muista pareista. Excel ei tarjoa valmiita työkaluja parivertailujen tekemiseen. Kahden riippumattoman otoksen t-testiä ei voi sellaisenaan käyttää, koska testin toistaminen usealle parille lisää hylkäämisvirheen todennäköisyyttä. SPSS sisältää menetelmiä parivertailujen tekemiseen. Lue lisää artikkelistani SPSS: Yksisuuntainen varianssianalyysi.