Aihearkisto: Analysoi

Tilastoaineiston analysointi

Määrälliset muuttujat pivot-kaaviona

Päivitetty 6.2.2019

Olethan opetellut artikkelissa Pivot-kaaviot kuvatut toimet ennen tämän artikkelin lukemista?

Määrälliset muuttujat mittaavat määrää: euroja, vuosia, metrejä, kiloja jne.

Seuraavien esimerkkien aineistot ja pivot-taulukot löydät tiedostosta pivotchart3.xlsx.

Ryhmittely

Jos haluan laskea määrällisen muuttujan arvojen esiintymiskertoja, niin yleensä tarvitsen ryhmittelyä. Tarkastelen esimerkkinä ikäjakauman esittämistä. Esimerkkiaineistona käytän tiedoston pivotchart3.xlsx Data-aineistoa.

  • Valitsen yhden ja vain yhden solun aineiston alueelta.
  • Valitsen Insert-välilehdeltä PivotChart. Jos en vaihda Create PivotChart -ikkunan asetuksia, niin pivot-kaaviota varten muodostuu uusi taulukko (Sheet). Uudessa taulukossa ovat paikkavaraukset pivot-taulukolle ja pivot-kaaviolle.
  • Pivot-kaavion rakenteen määrittelen PivotChart Fields -kenttäluettelossa, joka on näkyvillä pivot-kaavion ollessa valittuna.
  • Raahaan ikä-muuttujan Values-ruutuun.
  • Vaihdan laskentaperusteeksi Sum sijasta Count.
  • Raahaan ikä-muuttujan Axis (Categories) -ruutuun.
  • Valitsen pivot-taulukosta solun, jossa on ensimmäinen ikä (20).
  • Valitsen Analyze-välilehdeltä Group Field (Ryhmän kenttä).

pivotkaavio11

  • Grouping-ikkunassa voin tarvittaessa vaihtaa Excelin ehdottamia ryhmittelyn aloituskohtaa, päättymiskohtaa ja ryhmävälin suuruutta.

Räätälöity ryhmittely

Edellä kuvaamallani Group Field -toiminnolla saan vain tasavälisiä ryhmittelyitä, joissa ryhmävälin suuruus on sama kaikissa ryhmissä. Seuraavassa määrittelen iälle ryhmittelyn 20-29, 30-39, 40-49, 50+. Jatkan suoraan edellisen esimerkin pivot-kaaviosta.

  • Poistan aiemman iän ryhmittelyn (valitsen pivot-taulukosta ensimmäisen ikäryhmän solun ja valitsen Analyze-Ungroup (Pura ryhmittely).
  • Valitsen pivot-taulukosta solut, joissa on iät 20-29.
  • Valitsen Analyze-Group Selection (Ryhmän valinta).
  • Valitsen pivot-taulukosta solut, joissa on iät 30-39.
  • Valitsen Analyze-Goup Selection.
  • Toistan edellä kuvattuja vaiheita kunnes kaikki ryhmät on luotu.

Excel nimeää ryhmät Group1, Group2, jne. Voin kirjoittaa nimien tilalle kuvaavammat nimet. Ryhmän nimen vieressä on -/+ -painike, josta voin piilottaa tai näyttää ryhmän yksityiskohtaiset tiedot.

Seuraavassa olen nimennyt ensimmäisen ryhmän 20-29 ja olen piilottanut kolmen ensimmäisen ryhmän yksityiskohtaiset tiedot. Huomaa, että pivot-kaavio näyttää tiedot sellaisena kuin ne ovat pivot-taulukossa.

pivotkaavio12

Itselläni on tapana tehdä ryhmittelyt etukäteen alkuperäiseen aineistoon. Lue lisää artikkelista Muuttujan arvojen ryhmittely ja muuttaminen.

Keskiarvo

Seuraavassa lasken palkkakeskiarvot koulutuksen mukaan:

  • Valitsen yhden ja vain yhden solun aineiston alueelta.
  • Valitsen Insert-välilehdeltä PivotChart. Jos en vaihda Create PivotChart -ikkunan asetuksia, niin pivot-kaaviota varten muodostuu uusi taulukko (Sheet). Uudessa taulukossa ovat paikkavaraukset pivot-taulukolle ja pivot-kaaviolle.
  • Pivot-kaavion rakenteen määrittelen PivotChart Fields -kenttäluettelossa, joka on näkyvillä pivot-kaavion ollessa valittuna.
  • Raahaan palkka-muuttujan Values-ruutuun.
  • Vaihdan laskentaperusteeksi Count sijasta Average.
  • Raahaan koulutus-muuttujan Axis (Categories) -ruutuun.
  • Siirrän pivot-taulukon Peruskoulu-solun 2. aste -solun yläpuolelle, jolloin koulutukset menevät koulutuksen pituuden mukaiseen järjestykseen.

Viimeistelyn jälkeen pivot-kaavio voisi näyttää seuraavalta:

pivotkaavio13

Vastausten lukumäärät (n) kirjoitin riviotsikoihin. Sain lukumäärät selville vaihtamalla hetkeksi laskentaperusteeksi Average sijasta Count.

Summa

Summa on käyttökelpoinen yhteenvetotapa esimerkiksi myyntitietojen yhteydessä. Seuraavassa käytän tiedoston pivotchart3.xlsx aineistoa Myynnit.

  • Valitsen yhden ja vain yhden solun aineiston alueelta.
  • Valitsen Insert-välilehdeltä PivotChart. Jos en vaihda Create PivotChart -ikkunan asetuksia, niin pivot-kaaviota varten muodostuu uusi taulukko (Sheet). Uudessa taulukossa ovat paikkavaraukset pivot-taulukolle ja pivot-kaaviolle.
  • Pivot-kaavion rakenteen määrittelen PivotChart Fields -kenttäluettelossa, joka on näkyvillä pivot-kaavion ollessa valittuna.
  • Raahaan Hinta-muuttujan Values-ruutuun. Laskentaperuste on valmiiksi Sum, koska jokaisella rivillä on arvo Hinta-muuttujalla.
  • Raahaan Myyjä-muuttujan Axis (Categories) -ruutuun.

Voin järjestää myyntisummat suuruusjärjestykseen valitsemalla Pivot-taulukon tai Pivot-kaavion pudotusvalikosta More Sort Options ja järjestämällä Sum of Hinta -mukaiseen järjestykseen. Viimeistelyn jälkeen pivot-kaavio voisi näyttää seuraavalta:

pivotchart21

Monivalinta pivot-kaaviona

Päivitetty 6.2.2019

Olethan opetellut artikkelissa Pivot-kaaviot kuvatut toimet ennen tämän artikkelin lukemista?

Monivalintakysymyksessä tarjotaan useita vaihtoehtoja, joista vastaaja voi valita useammankin kuin yhden. Jokainen monivalinnan vaihtoehto tallennetaan aineistoon omana sarakkeenaan. Jos vaihtoehto on valittu, niin aineistossa on arvo 1, muussa tapauksessa aineistoon voidaan jättää tyhjä kohta.

Seuraavassa käytän esimerkkinä kyselytutkimusaineistoa, jossa on kysytty työntekijän hyödyntämiä etuisuuksia: työterveyshuolto, lomaosake, kuntosali, hieroja. Esimerkkiaineisto ja pivot-kaaviot löytyvät tiedostosta pivotchart2.xlsx.

  • Valitsen yhden ja vain yhden solun aineiston alueelta.
  • Valitsen Insert-välilehdeltä PivotChart. Jos en vaihda Create PivotChart -ikkunan asetuksia, niin pivot-kaaviota varten muodostuu uusi taulukko (Sheet). Uudessa taulukossa ovat paikkavaraukset pivot-taulukolle ja pivot-kaaviolle.
  • Pivot-kaavion rakenteen määrittelen PivotChart Fields -kenttäluettelossa, joka on näkyvillä pivot-kaavion ollessa valittuna.
  • Raahaan työterveyshuolto-muuttujan Values-ruutuun.
  • Raahaan lomaosake-muuttujan Values-ruutuun.
  • Raahaan kuntosali-muuttujan Values-ruutuun.
  • Raahaan hieroja-muuttujan Values-ruutuun.

pivotkaavio7

Tässä vaiheessa lasketut arvot ovat pivot-taulukossa sarakkeittain, koska Excel on sijoittanut Values-palikan Legend (Series)-ruutuun. Pivot-kaaviossa tämä näkyy siten, että jokainen pylväs muodostaa oman arvosarjansa ja näkyy omalla värillään.

  • Raahaan Legend (Series)-ruudun Values-palikan Axis (Categories)-ruutuun.
  • Kirjoitan pivot-taulukkoon monivalinnan vaihtoehtojen nimet nimien Count of työterveyshuolto jne. tilalle. Excel ei kelpuuta muuttujan nimenä esiintyvää työterveyshuolto pivot-taulukon riviotsikoksi, joten lisään nimen perään välilyönnin.

pivotkaavio9

Yleensä monivalinnan pylväät kannattaa järjestää pituusjärjestykseen.

  • Napsautan hiiren oikeaa painiketta jonkin pivot-taulukon lukumäärän päällä ja valitsen Sort – Sort Largest to Smallest.

Pienen viimeistelyn jälkeen pivot-kaavio voisi näyttää seuraavalta.

pivotkaavio10

Jos haluan tarkastella asiaa ryhmittäin esimerkiksi sukupuolen mukaan, niin voin vielä raahata ryhmittelevän muuttujan Legend (Series) -ruutuun.

Pivot-kaaviot

Päivitetty 6.2.2019

Tässä artikkelissa kirjoitan pylväskaavioista. Oletan, että osaat jo entuudestaan laatia ja muotoilla pylväskaavioita. Jollet osaa, niin opit perusasiat itseopiskelupaketista kaavio.xlsx.

Pivot-kaavioilla laadin nopeasti monipuolisia yhteenvetoja isosta aineistosta. Aineiston täytyy olla asianmukaiseen muotoon tallennettu artikkelin Tilastoaineiston tallentaminen mukaisesti. Tämän artikkelin esimerkeissä käytetyn aineiston ja pivot-kaaviot löydät tiedostosta pivotchart.xlsx.

Yksinkertainen pivot-kaavio

Tarkastelen pivot-kaaviota, josta näen kuinka moni työntekijä on kuinkakin tyytyväinen johtoon:

  • Valitsen yhden ja vain yhden solun aineiston alueelta.
  • Valitsen Insert-välilehdeltä PivotChart – PivotChart & PivotTable. Jos en vaihda Create PivotChart -ikkunan asetuksia, niin pivot-kaaviota varten muodostuu uusi taulukko (Sheet). Uudessa taulukossa ovat paikkavaraukset pivot-taulukolle ja pivot-kaaviolle.
  • Pivot-kaavion rakenteen määrittelen PivotChart Fields (Pivot-kaavion kentät) -kenttäluettelossa, joka on näkyvillä pivot-kaavion ollessa valittuna.
  • pivotkaavio1Raahaan tyytyväisyys johtoon -muuttujan Values-ruutuun. Excel laskee havaintojen lukumäärän (jos havaintoja puuttuu) tai havaintojen summan (jos jokaisella aineiston rivillä on havainto). Muuttujan tyytyväisyys johtoon -tapauksessa Excel laskee havaintojen summan. Muutan tämän lukumääräksi.
  • Napsautan Values-ruutuun raahaamaani palikkaa. Valitsen esiin tulevasta pudotusvalikosta Value Field Settings (Arvokentän asetukset).
  • Valitsen Value Field Settings -ikkunassa laskentaperusteeksi Count (Määrä) ja napsautan OK.

Tässä vaiheessa pivot-kaavion pylväs esittää havaintojen lukumäärän.

pivotkaavio2

Raahaan tyytyväisyys johtoon -muuttujan Axis (Categories) (Akseli) -ruutuun. Axis (Categories) on tarkoitettu kaavion luokka-akselin luokille. Tässä tapauksessa luokkia ovat muuttujan tyytyväisyys johtoon arvot 1, 2, 3, 4 ja 5. Arvojen sanalliset selitteet kirjoitan suoraan Pivot-taulukkoon numeroiden 1, 2, 3, 4 ja 5 tilalle.

Viimeistelyn jälkeen kaavio voisi näyttää seuraavalta:

pivotkaavio5

Tavallisista kaavioista poiketen pivot-kaaviossa on ylimääräisiä ”painikkeita”, joiden avulla voin lajitella ja suodattaa. Jos kaavio on valittuna, niin voin piilottaa ylimääräiset painikkeet valitsemalla Analyze-välilehdeltä Field Buttons – Hide All (Kenttäpainikkeet – Piilota kaikki).

Ryhmitelty pivot-kaavio

Jos raahaan sukupuoli-muuttujan Legend (Series) (Selite) -ruutuun, niin tuloksena on ryhmitelty pylväskaavio, jossa on erikseen arvosarja miehille ja naisille. Jos kaaviossa ei ole selitettä (Legend), joka selittää värien merkityksen, niin se kannattaa lisätä.

pivotkaavio4

Kun kaavio on valittuna, niin käytettävissä on Design (Rakenne) -välilehti. Kokeile Design-välilehden Switch Row/Column (Vaihda rivi tai sarake) -toimintoa. Seuraa muutoksia kenttäluettelossa, pivot-kaaviossa ja pivot-taulukossa niin opit ymmärtämään kaavion ja taulukon rakennetta.

Prosentteja lukumäärien sijasta

Jos haluan esittää lukumäärät prosentteina, niin napsautan oikean reunan kenttäluettelon Values-ruudun palikkaa ja valitsen esiin tulevasta valikosta Value Field SettingsValue Field Settings -ikkunasta valitsen Show Values As (Näytä arvot muodossa) -välilehden ja valitsen pudotusvalikosta esitystavaksi % of Column Total (Prosenttia sarakkeen summasta).

Pylväiden järjestys

Excel järjestää pivot-taulukon rivit ja pivot-kaavion pylväät luokkien mukaiseen numero/aakkosjärjestykseen. Voin vaihtaa järjestyksen pivot-taulukon Row Labels -pudotusvalikosta tai pivot-kaaviossa olevan painikkeen pudotusvalikosta (painike on näkyvillä, jollet ole piilottanut sitä Analyze – Field Buttons – Hide All -toiminnolla). Pudotusvalikon More Sort Options (Lisää lajitteluvaihtoehtoja) -valinnalla löydät tarjolla olevat vaihtoehdot:

  • Voit järjestää luokkien mukaiseen nousevaan tai laskevaan numero/aakkosjärjestyskeen.
  • Voit järjestää lukumäärien/prosenttien mukaiseen järjestykseen (eli pylväiden pituuden mukaiseen järjestykseen).

Jos haluat muunlaisen järjestyksen, niin voit siirtää hiirellä pivot-taulukon riviotsikoita riviltä toiselle. Jos esimerkiksi laadin pivot-kaavion koulutus-muuttujasta, niin luokkien mukainen numero/aakkkosjärjestys ei ole toivottu:

pivotkaavio6

Valitsen pivot-taulukosta solun, jossa on teksti Peruskoulu ja raahaan solun reunasta kiinni pitäen ensimmäiseksi, jonka jälkeen koulutukset ovat koulutuksen pituuden mukaisessa järjestyksessä.

Puuttuvat havainnot (blank)

Jos käytän koulutus-muuttujaa Values-ruudussa, niin pivot-taulukon ja pivot-kaavion (blank) viittaa puuttuviin havaintoihin. Puuttuvien havaintojen lukumäärä ei kuitenkaan ole näkyvillä.

Selitys: Excel laskee kuinka monta havaintoarvoa on koulutus-sarakkeen niissä soluissa, joista koulutus puuttuu. Vastaus on tietenkin: ei yhtään.

Ratkaisu: Käytän Values-ruudussa koulutus-muuttujan sijasta nro-muuttujaa (laskentatavaksi täytyy muuttaa sum sijasta count), jolla on havainto jokaisella rivillä.

Jos aineistossa ei ole valmiiksi juoksevaa numerointia, niin sellainen kannattaa lisätä. Tätä juoksevaa numerointia kannattaa käyttää pivot-kaavioiden Values-ruudussa jos olet laskemassa lukumääriä tai lukumääriin pohjautuvia prosentteja. Näin saan tietää myös puuttuvien havaintojen lukumäärän.

Seuraavaksi

Lue myös pivot-kaavioista kirjoittamani jatkoartikkelit:

Spearmanin järjestyskorrelaatio

Päivitetty 19.4.2019.

Järjestysasteikollisille muuttujille korrelaationa käytetään nimenomaan Spearmanin järjestyskorrelaatiota. Ennen Spearmanin järjestyskorrelaation laskemista muuttujien arvot täytyy muuntaa sijaluvuiksi.

Jos muuttujien arvot ovat sijalukuja, niin niiden välinen korrelaatiokerroin lasketaan samoin kuin Pearsonin korrelaatiokerroin (lue lisää artikkelista Korrelaatio ja sen merkitsevyys), mutta sitä kutsutaan Spearmanin järjestyskorrelaatiokertoimeksi.

  • Positiivinen järjestyskorrelaatiokerroin merkitsee sitä, että järjestykset ovat jossain määrin samansuuntaiset. Järjestyskorrelaatiokerroin 1 tarkoittaa sijalukujen täsmälleen samaa järjestystä.
  • Negatiivinen järjestyskorrelaatiokerroin merkitsee sitä, että järjestykset ovat jossain määrin vastakkaiset. Järjestyskorrelaatio -1 tarkoittaa sijalukujen täsmälleen vastakkaista järjestystä.

Järjestysasteikollisille muuttujille korrelaationa käytetään nimenomaan Spearmanin järjestyskorrelaatiota. Ennen Spearmanin järjestyskorrelaation laskemista muuttujien arvot täytyy muuntaa sijaluvuiksi.

Sijaluvut

Excelissä voin laskea sijaluvut funktiolla RANK.AVG (ARVON.MUKAAN.KESKIARVO). Funktiolle annan kolme argumenttia:

  1. Viittaus muuttujan arvoon, jota vastaavan sijaluvun haluan laskea
  2. Viittaus kaikkiin muuttujan arvoihin. Viittaus pitää kiinnittää (F4), jos kopioin funktiota muihin soluihin.
  3. Kolmanneksi argumentiksi annan 1, jos haluan pienimmälle muuttujan arvolle pienimmän sijaluvun tai 0 jos haluan suurimmalle muuttujan arvolle pienimmän sijaluvun. Tällä ei ole vaikutusta Spearmanin järjestyskorrelaation arvoon.

Jos sama arvo esiintyy useasti, niin sijaluvuksi tulee sijalukujen keskiarvo. Seuraavassa taulukossa arvo 7 esiintyy sijaluvuilla 5, 6 ja 7. Jaetuksi sijaluvuksi tulee sijalukujen keskiarvo (5+6+7)/3=6.

spearma1

Sijalukujen laskeminen onnistuu vaikka arvot eivät olisikaan suuruusjärjestyksessä.

Korrelaatio

Sen jälkeen kun olen laskenut muuttujan arvoille sijaluvut, voin laskea sijalukujen välisen korrelaation CORREL (KORRELAATIO) -funktiolla. Funktion ensimmäiseksi argumentiksi annan viittauksen ensimmäisen muuttujan sijalukuihin ja toiseksi argumentiksi viittauksen toisen muuttujan sijalukuihin.

Korrelaation merkitsevyys

Jos aineisto pohjautuu laajemmasta perusjoukosta satunnaisesti valittuun otokseen, niin tietyin edellytyksin voin yleistää otoksen tuloksia perusjoukkoon. Järjestyskorrelaation tapauksessa tämä tarkoittaa sijalukujen välisen korrelaation yleistämistä perusjoukkoon.

Pienet korrelaatiot voin selittää otantavirheellä. Otoksessa havaitun korrelaation täytyy olla riittävän suuri, jotta voin yleistää sen perusjoukkoon. Suuruutta testaan vertaamalla korrelaatiokerrointa hypoteettiseen tilanteeseen, jossa ei ole lainkaan korrelaatiota (korrelaatiokerroin on 0). Jos otoksesta laskettu korrelaatiokerroin poikkeaa riittävästi nollasta, niin voin kutsua korrelaatiota tilastollisesti merkitseväksi.

Korrelaatiokertoimen merkitsevyyden testaamiseksi lasketaan niin kutsuttu p-arvo, joka vastaa seuraavaan kysymykseen: kuinka todennäköistä on saada havaitun suuruinen tai vielä kauempana nollasta oleva korrelaatiokertoimen arvo ilman että korrelaatiota on perusjoukossa? Mitä pienempi p-arvo on sitä enemmän korrelaation yleistäminen perusjoukkoon saa tukea.

Vakiintuneen tavan mukaisesti alle 0,05 (5 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa esiintyvän korrelaation puolesta.

Jos haluat tietää p-arvon laskentaperusteesta, niin lue artikkeli Korrelaatio – lisätietoa.

Voit käyttää p-arvon laskemiseen valmista laskentapohjaa testaa_korrelaatio.xlsx. Kirjoita laskentapohjaan otoskoko ja korrelaatiokerroin, jonka jälkeen voit lukea p-arvon. Käytä 2-suuntaista p-arvoa, jos testaat sitä onko korrelaatio nollasta poikkeava. Käytä 1-suuntaista p-arvoa, jos testaat pelkästään korrelaation positiivisuutta tai pelkästään korrelaation negatiivisuutta. Huomaa, että laskentapohjassa on erillinen taulukko pieniä otoskokoja (alle 30) varten.

SPSS

SPSS:llä on helpompaa laskea Spearmanin järjestyskorrelaatiot, koska SPSS määrittää sijaluvut automaattisesti, kun määrität laskettavaksi Spearmanin järjestyskorrelaatiokertoimen. SPSS laskee automaattisesti myös p-arvon ja huomioi pieniin otoksiin liittyvän poikkeavan laskentatavan. Lue lisää SPSS-monisteesta.

Logistinen regressio 2

Päivitetty 5.6.2014

Tämä artikkeli on jatkoa artikkeliin Logistinen regressio.

Askeltava (Stepwise) menetelmä

Selittäviä muuttujia ei pidä ottaa logistiseen regressiomalliin enempää kuin on tarpeellista. Paras tilanne on, jos tiedän mukaan otettavat selittävät muuttujat aiempien aineistojen tai teorian kautta. Jos aiempaa tietoa tai teoriaa ei ole, niin voin käyttää apuna askeltavaa (Stepwise) menetelmää.

SPSS tarjoaa askellukseen Forward– ja Backward-menetelmiä.

Forward-menetelmässä SPSS aloittaa mallista, joka sisältää pelkästään vakiotermin. SPSS lisää malliin selittäviä muuttujia yksi kerrallaan. Lisättävä muuttuja on se, joka lisää eniten mallin selitysvoimaa. Uuden muuttujan lisäämisen jälkeen SPSS tarkistaa, pitäisikö jokin malliin jo lisätyistä muuttujista poistaa. Forward LR -menetelmässä poistamisen kriteerinä käytetään log-likelihoodia. Jos muuttujan poistaminen ei muuta merkitsevästi mallin log-likelihoodia, niin SPSS poistaa muuttujan mallista. Muuttujien lisääminen lopetetaan, kun mikään uusi muuttuja ei enää merkittävästi paranna mallin selitysvoimaa.

Backward-menetelmässä otetaan ensimmäiseen malliin mukaan kaikki ehdokkaat. Tämän jälkeen selittäviä muuttujia poistetaan mallista yksi kerrallaan. Backward LR -menetelmässä poistamisen kriteerinä käytetään log-likelihoodia. Jos muuttujan poistaminen ei muuta merkitsevästi mallin log-likelihoodia, niin SPSS poistaa muuttujan mallista. Muuttujien poistaminen lopetetaan, kun minkä tahansa muuttujan poistaminen heikentää merkittävästi mallin selitysvoimaa.

Käytännössä Forward– ja Backward-menetelmien tuottamat mallit usein poikkeavat toisistaan. Menetelmän ja lopullisen mallin valinnassa kannattaa käyttää tapauskohtaista harkintaa.

Esimerkki

Käytän seuraavassa SPSS-muotoista aineistoa logit2.sav. Aineiston lähde ja tarkempi kuvaus: http://logisticregressionanalysis.com/303-what-a-logistic-regression-data-set-looks-like-an-example/

Suoritan laskennan SPSS:llä:

  • Valitsen Analyze – Regression – Binary Logistic.
  • Siirrän selitettävän muuttujan Dependent-ruutuun.
  • Siirrän selittävät muuttujat Covariates-ruutuun.
  • Valitsen Method-alasvetovalikosta menetelmän; tässä esimerkissä Forward LR.
  • Valitsen OK.

logit4

SPSS:n tulosteissa otsikon Block 0 alla on tiedot mallista, jossa on mukana pelkästään vakiotermi. Askeltavan menetelmän vaiheet ja lopullisen mallin löydän otsikon Block 1 alta.

Omnibus-taulukon Model-rivin Chi-square-sarake kertoo kuinka paljon -2 Log likelihood (-2 Log likelihoodista lisää artikkelissa Log likelihood) on muuttunut verrattuna edeltävään malliin. Tämä muutos noudattaa khiin neliö -jakaumaa, jonka perusteella saadaan muutoksen merkitsevyys (Sig.). Esimerkissämme jokainen malliin lisätyistä viidestä selittävästä muuttujasta on parantanut mallia merkitsevästi (Sig.<0,001).

logit5

Variables in the Equation -taulukosta näen malliin lisätyt muuttujat.

logit6

Osa aineistosta testiaineistona

Data mining -tyyppisessä analyysissä analysoidaan usein isoja aineistoja. Ison aineiston tapauksessa mallin sopivuutta voidaan testata laskemalla malli osalle aineistosta ja testaamalla kuinka hyvin malli sopii lopulle aineistolle. Tätä varten voin lisätä SPSS-aineistoon ylimääräisen muuttujan, joka erottelee aineiston kahteen osaan:

  • osa, jonka perusteella lasketaan malli
  • osa, jolla testataan lasketun mallin sopivuutta.

Voin lisätä ylimääräisen muuttujan SPSS:n Transform – Compute Variable -toiminnolla:

  • Valitsen Transform – Compute Variable.
  • Kirjoitan uudelle muuttujalle nimen Target Variable -ruutuun.
  • Kirjoitan Numeric Expression -ruutuun funktion RV.BERNOULLI(0.5).
  • Valitsen OK.

Näin laskettu uusi muuttuja saa satunnaisesti arvoja 0 ja 1 siten, että puolet on nollia ja puolet ykkösiä. Voin lisätä tämän muuttujan Logistic Regression -määrittelyikkunassa Selection Variable -ruutuun (olen antanut muuttujalle nimeksi Random). SPSS:lle täytyy kertoa Rule-painikkeella, mille muuttujan arvoille lasketaan logistinen regressio. Seuraavassa olen laskemassa logistista regressiota niiden rivien pohjalta, joissa Random-muuttujan arvo on 1.

logit7

Tulosteiden joukossa on muiden muassa Classification Table, josta näen kuinka hyvin malli ennustaa Buy-muuttujan arvoja. Lopullisessa mallissa (Step 4) malli ennustaa ostaneista (Buy=1) 75 % oikein. Aineiston toisessa puolikkaassa malli ennustaa ostaneista (Buy=1) 80,5 % oikein. Ainakin tässä mielessä malli näyttäisi toimivan hyvin.

logit8

Jos kokeilet yllä kuvattua esimerkkiaineistolla, niin voit hyvinkin päätyä erilaiseen malliin, koska aineisto voi olla eri tavalla jaettu kahteen osaan.

Kaiken kaikkiaan on kiusallista ja hämmentävää, koska samalla aineistolla voin päätyä eri menetelmillä erilaisiin malleihin. Mallin valinnassa täytyy käyttää tilannekohtaista harkintaa.

 

 

 

Logistinen regressio

Päivitetty 5.6.2014

Mistä on kyse?

Esimerkki. Lomaosakkeita myyvä yritys tarjoaa huippuhalvan viikonlopun kylpylässä lomaosakkeen esittelyyn osallistuville. Tarjous kannattaa kohdistaa henkilöille, joiden todennäköisyys lomaosakkeen ostoon on tavanomaista suurempi. Aiempien esittelyiden ja toteutuneiden kauppojen perusteella voidaan laatia malli, jolla lasketaan taustatietojen perusteella henkilön todennäköisyys lomaosakkeen ostoon.

Esimerkki. Luottoriskin arvioimiseksi pankin on hyvä tietää kuinka todennäköisesti luotonottajalle tulee maksuhäiriöitä. Aiempien maksuhäiriöiden perusteella voidaan laatia malli, jolla lasketaan taustatietojen perusteella luotonottajan todennäköisyys maksuhäiriöille.

Esimerkki. Lääkäri diagnosoi sairauden. Aiempien potilaiden potilastietojen perusteella voidaan laatia malli, jolla lasketaan potilaan parantumisen todennäköisyys.

Edellä kuvatuissa esimerkeissä voidaan käyttää todennäköisyyden arviointiin logistista regressiota. Logistista regressiota voidaan käyttää, jos ennustettavana on kategorinen muuttuja: ostaa tai ei osta, tulee maksuhäiriöitä tai ei tule, paranee tai ei parane. Selittävinä muuttujina voi olla sekä määrällisiä että kategorisia muuttujia.

Ilman käsitteiden odds ja logit ymmärtämistä logistista regressiota ei voi ymmärtää, joten aloitan niistä.

Odds

Odds-käsitteelle ei valitettavasti ole vakiintunutta suomennosta. Monet sanakirjat antavat suomennokseksi todennäköisyys, mutta odds on tarkkaan ottaen todennäköisyyksien suhde. Suomennoksia veto, vedonlyöntisuhde ja riski näkyy käytettävän. Minä käytän seuraavassa sekaannuksien välttämiseksi englanninkielistä termiä odds.

Jos tapahtuman todennäköisyys on p, niin odds tapahtuman puolesta:

odds = p / (1-p)

Jos odds on tiedossa, niin yllä olevasta kaavasta voin ratkaista todennäköisyyden:

p = odds / (odds+1)

Esimerkki. Nopanheitossa todennäköisyys saadaa kuutonen on yksi kuudesta (1/6) ja todennäköisyys olla saamatta kuutosta on viisi kuudesta (5/6). Odds on todennäköisyyksien suhde:

  • Odds kuutosen puolesta = (1/6)/(5/6)=1/5=0,2
  • Odds kuutosta vastaan = (5/6)/(1/6)=5

Logit

Edellisen nopanheittoesimerkin odds 0,2 kuutosen puolesta ja 5 kuutosta vastaan kuvaavat samaa tilannetta eri näkökulmista. Tämä ilmenee jännästi, jos otan logaritmit:

  • ln(0,2) ≈ -1,609
  • ln(5) ≈ 1,609

Jatketaan nopanheitolla ja tarkastellaan todennäköisyyttä saada parillinen silmäluku. Todennäköisyys on 1/2 ja odds on (1/2)/(1/2)=1. Tässä tapauksessa logaritmi on ln(1)=0.

ln(odds) on niin hyödyllinen, että sille on annettu oma nimi logit:

logit = ln (odds)

Logitilla on muiden muassa seuraavat ominaisuudet:

  • Jos todennäköisyys on 50 %, niin logit = 0.
  • Jos todennäköisyys on alle 50 %, logit on negatiivinen. Logit on sitä enemmän negatiivinen mitä pienempi todennäköisyys.
  • Jos todennäköisyys on yli 50 %, niin logit on positiivinen. Logit on sitä enemmän positiivinen mitä isompi todennäköisyys.

Jatkoa ajatellen on hyvä oppia miten logitista päästään takaisin oddsiin. Tässä tarvitaan luonnollisen logaritmin käänteistoimitusta (e on luonnollisen logaritmin kantaluku eli Neperin luku):

odds=eln(odds)=elogit

Edellä jo totesin, että oddsista saadaa todennäköisyys laskemalla odds/(odds+1). Yhdistämällä tämä tulos äskeiseen, saadaan muunnoskaava logitista todennäköisyyteen:

p = elogit/(1+elogit)

Logistinen regressio

Seuraavassa esimerkkinä käytettävä aineisto SPSS-muodossa logit1.sav (aukeaa vain SPSS:llä) ja Excel-muodossa logit1.xlsx. Kiinnostuksen kohteena on Buy (1=osti, 2=ei ostanut). Seuraavassa on näkyvillä aineiston ensimmäiset rivit:

likelihood1

Selittävinä muuttujina ovat income (tulot), isfemale (1=nainen, 0=mies) ja ismarried (1=naimisissa, 0=naimaton). Otetaan tavoitteeksi laatia malli, jonka avulla voidaan ennustaa oston todennäköisyys muuttujien income, isfemale ja ismarried perusteella.

Logistinen regressiomalli on lineaarinen regressiomalli, jossa selitettävänä muuttujana on logit (todennäköisyyttä ei sellaisenaan saada sovitettua lineaariseen malliin). Esimerkkiaineiston tapauksessa pyrimme muodostamaan mallin

logit = b0+b1*income + b2*isfemale + b3*ismarried

Mallin parametrit (b0, b1, b2, b3) määritetään maximum likelihood eli suurimman uskottavuuden -menetelmällä. Mallin käyttäjän ei välttämättä tarvitse ymmärtää maximum likelihood -menetelmän yksityiskohtia, mutta seuraavat perusideat on hyvä tuntea:

  • Parametreille annetaan arvauksena alkuarvot.
  • Lasketaan todennäköisyys sille, että havaittu data saataisiin näillä parametrien arvoilla.
  • Korjataan parametreja siten että päästään parempaan tulokseen.
  • Korjauksia tehdään, kunnes päästään parhaaseen mahdolliseen tulokseen. Paras mahdollinen tulos on se, johon liittyy suurin mahdollinen todennäköisyys sille, että havaittu data saataisiin valituilla parametrien arvoilla.

Esimerkkiaineisto maximum likelihood -menetelmä antaa malliksi:

logit = -12,033 + 0,00016742*income + 1,3653*isfemale + 1,3804*ismarried

Esimerkiksi 50000 ansaitsevan naimattoman naisen logit:

logit = -12,033 + 0,00016742*50000+1,3653*1+1,3804*0 ≈ -2,2967

Edellä jo opimme, että logit voidaan muuntaa todennäköisyydeksi p = elogit/(1+elogit). Näin esimerkiksi 50000 ansaitsevan naimattoman naisen todennäköisyys ostolle:

p = e-2,2967/(1+e-2,2967) ≈ 0,09 = 9 %

SPSS ja logistinen regressio

Voin suorittaa laskennan SPSS:llä seuraavasti:

  • Valitsen Analyze – Regression – Binary Logistic.
  • Siirrän selitettävän muuttujan Dependent-ruutuun.
  • Siirrän selittävät muuttujat Covariates-ruutuun.

logisticregression1

SPSS:n tulosteissa on kaksi mallia. Otsikon Block 0 alta löydän tiedot mallista, jossa on ainoastaan vakiotermi b0, mutta ei lainkaan selittäviä muuttujia. Tämä malli on mukana vertailun vuoksi.

logisticregression2

Tulosteesta voin lukea, että vakiotermi on -1,478. Tämä tarkoittaa mallia logit=-1,478. Tällöin todennäköisyys p = e-1,478/(1+e-1,478) ≈ 0,1857. Tämä on sama kuin aineistossa niiden osuus, jotka ovat ostaneet (125/673≈0,1857). Pelkästään vakiotermin sisältävä malli siis antaa ostamisen todennäköisyydeksi ostaneiden osuuden. Koska ostaneiden osuus on alle 50 %, niin mallin mukaan ennuste on aina ”ei osta”. Tällainen ennuste osuu kohdalleen 81,4 prosentissa tapauksista (548/673≈0,814).

Varsinaisen selittäviä muuttujia sisältävän mallin tiedot löydän otsikon Block 1 alta. Ensiksi arvioin mallin hyvyyttä verrattuna malliin, jossa on vain vaikiotermi. Hyvyyttä voin arvioida Omnibus-taulukon Model-riviltä. Chi-square-sarake kertoo kuinka paljon -2 Log likelihood (-2 Log likelihoodista lisää artikkelissa Log likelihood) on muuttunut verrattuna pelkästään vakiotermin sisältävään malliin. Tämä muutos noudattaa khiin neliö -jakaumaa, jonka perusteella saadaan muutoksen merkitsevyys (Sig.). Esimerkissämme selittävät muuttujat sisältävä malli on merkitsevästi parempi (Sig.<0,001) kuin pelkästään vakiotermin sisältävä malli.

logit3

Model Summary -taulukosta löydän -2 Log likelihood -arvon lisäksi kaksi R2-arvoa (lisätietoa artikkelissa Log likelihood), jotka yrittävät jäljitellä lineaarisen regressiomallin selityskerrointa. Näiden lisäksi on esitetty monia muita tapoja laskea R2-arvo. Yksimielisyyttä parhaasta laskentatavasta ei ole, minkä vuoksi R2-arvojen käyttö ja tulkinta on hankalaa. Aina kuitenkin pätee seuraava: mitä lähempänä R2-arvo on ykköstä sitä parempi.

Classification-taulukosta selviää, että malli ennustaa 95,8 % ei ostaneista oikein ja 84,8 % ostaneista oikein. Tässä mielessä malli vaikuttaa onnistuneelta.

logit2

Variables in the Equation -taulukko sisältää regressiokertoimet. Income-kerroin (B) ,000 ei tarkoita, että tuloilla ei olisi mitään vaikutusta ostamiseen. Jos lisään desimaalien määrää kyseisessä solussa, niin huomaan kertoimen poikkeavan nollasta.

logit1

Varmistan aina, että regressiokertoimet poikkeavat merkitsevästi nollasta. Tämä selviää Wald’in testimuuttujan avulla. Wald’in testimuuttuja saadaan jakamalla kerroin B keskivirheellään S.E. ja korottamalla tulos toiseen potenssiin. Wald’in testimuuttujan tiedetään noudattavan khiin neliö -jakaumaa, jonka perusteella merkitsevyys (Sig.) voidaan laskea. Esimerkissämme kaikki kertoimet poikkeavat merkitsevästi nollasta (Sig.<0,001), joten kaikki selittävät muuttujat voidaan tämän perusteella pitää mallissa mukana.

Malli on siis esimerkkimme tapauksessa (olen ottanut desimaaleja hieman enemmän Variables in the Equation -taulukossa oli näkyvillä):

logit = -12,033 + 0,00016742* income + 1,3653*isfemale + 1,3804*ismarried

Mallin parametrit (kertoimet) voidaan tulkita kuten lineaarisessa mallissa yleensäkin. Esimerkiksi income-kerroin 0,00016742 kertoo, että yhden euron lisäys tuloihin merkitsee 0,00016742 kasvua logitissa. Tämä ei kuitenkaan ole kovinkaan käyttökelpoinen tieto, koska logit on hieman hankala käsite ymmärrettäväksi.

Variables in the Equation -taulukossa on hieman helpommin tulkittavat muunnetut kertoimet Exp(B)-sarakkeessa. Exp(B)-sarakkeen kertoimet kertovat kuinka moninkertaisksi odds muuttuu, kun selittävä muuttuja kasvaa yhdellä yksiköllä.

  • Jos tulot kasvat yhdellä eurolla, niin odds kasvaa 1,0001674 kertaiseksi.
  • Naisilla odds on 3,917-kertainen miehiin verrattuna.
  • Naimisissa olevilla odds on 3,976-kertainen naimattomiin verrattuna.

Selittävien muuttujien valinta

Oma kysymyksensä on selittävien muuttujien valinta, jos ehdolla on paljon mahdollisia selittäviä muuttujia. Tästä lisää artikkelissa Logistinen regressio 2.

Log-likelihood

Päivitetty 27.7.2020

Tämä artikkeli täydentää artikkelia Logistinen regressio.

Logistisen regressiomallin laskenta ja sopivuuden arviointi perustuu log-likelihood -lukuun. Yritän tässä artikkelissa valottaa log-likelihood -luvun taustaa ja laskentaa.

Suurimman uskottavuuden menetelmä ja likelihood

Logistisen regressiomallin parametrit/kertoimet määritetään maximum likelihood eli suurimman uskottavuuden menetelmällä:

  • Parametreille annetaan arvauksena alkuarvot.
  • Lasketaan todennäköisyys (likelihood) sille, että havaittu data saataisiin näillä parametrien arvoilla.
  • Korjataan parametreja siten että päästään parempaan tulokseen (suurempi likelihood).
  • Korjauksia tehdään, kunnes päästään parhaaseen mahdolliseen tulokseen. Paras mahdollinen tulos on se, johon liittyy suurin mahdollinen todennäköisyys (maximum likelihood) sille, että havaittu data saataisiin valituilla parametreilla.

Likelihood’in laskenta

Käytän seuraavassa esimerkissä Excel-aineistoa logit1.xlsx, jonka alkuosan näet seuraavassa:

likelihood1

Artikkelissa Logistinen regressio olen esittänyt, miten tälle aineistolle lasketaan logistinen regressiomalli SPSS:llä. Esitän seuraavassa, miten likelihood ja log-likelihood lasketaan SPSS:n laskemalle regressiomallille. Laskennan olen suorittanut Excel-taulukkoon käyttäen SPSS:n antamia mallin parametreja, jotka olen kopioinut Exceliin. Excel käyttää koko ajan laskennassa 15 merkitsevän numeron tarkkuutta. Seuraavassa esittämäni laskelmat näyttävät vain pyöristettyjä likiarvoja.

Ensimmäisen vastaajan logit tulee suoraan regressiomallin yhtälöstä:

logit = -12,033 + 0,00016742*24000+1,3653*1+1,3804*0 ≈ -6,649

Logitista saadaan odds=elogit=e-6,649≈0,00129493

Ostamisen todennäköisyys on probability=odds/(1+odds)≈0,00129326

Likelihood on ostamisen todennäköisyys, jos kyseinen vastaaja on ostanut. Muussa tapauksessa likelihood saadaan vähentämällä ostamisen todennäköisyys ykkösestä. Ensimmäisen vastaajan tapauksessa

likelihood≈1-0,00129326≈0,99870674

Todennäköisyys, että kaikki havainnot ennustetaan oikein saadaan (todennäköisyyksien kertolaskusääntö) kertomalla likelihood’it keskenään. Isompien aineistojen tapauksessa tällainen kertolasku ei onnistu edes tietokoneelta. Niinpä onkin matemaattisesti mielekästä siirtyä tarkastelemaan likelihood’in logaritmia. Logaritmien käyttö mahdollistaa kertolaskun korvaamisen yhteenlaskulla, koska logaritmien laskusääntöjen mukaan tulon logaritmi saadaan logaritmien summana. Näin päästään log-likelihood -lukuun.

log-likelihood≈ln(0,99870674)≈-0,001294096

Muiden vastaajien log-likelihood lasketaan samalla periaatteella.

Likelihood on todennäköisyys, joten se saa arvoja väliltä [0,1]. Tästä seuraa, että log-likelihood saa negatiivisia arvoja tai arvon 0, jos likelihood=1. Mitä lähempänä nollaa log-likelihood on, sitä sopivampi malli.

SPSS:n ja myös muiden tilasto-ohjelmien tulosteissa ilmoitetaan log-likelihood kerrottuna luvulla -2. Tätä merkitään usein -2LL. Mitä pienempi -2LL on, sitä sopivampi malli on kyseessä.

Luvulla -2 kertominen tehdään, koska näin saadaan arvo, jonka muutoksen (verrattuna toiseen malliin) tiedetään noudattavan khiin neliö -jakaumaa. Khiin neliö -jakaumasta saadaan merkitsevyystaso (Sig.), jonka avulla voidaan arvioida mallin paremmuutta toiseen malliin verrattuna. Yleensä mallia pidetään merkitsevästi toista mallia parempana, jos Sig.<0,05.

Pseudo-selityskerroin

Logistisen regressiomallin selityskertoimen (R2) laskemiseksi on esitetty useita vaihtoehtoisia tapoja. Useimpien tapojen perustana on likelihood. Selityskertoimet eivät ole tulkinnallisesti yhtä konkreettisia kuin lineaarisen regression selityskerroin, joka ilmaisee kuinka suuren osan selitettävän muuttujan valihtelusta malli selittää. Logistisen regressiomallin selityskertoimia onkin tapana kutsua pseudo-selityskertoimiksi. SPSS esittää tulosteissaan Cox & Snell ja Nagelkerke -selityskertoimet:

likelihood2

Cox & Snell – selityskertoimen ongelma on, että se ei voi koskaan saavuttaa arvoa 1. Nagelkerke -selityskerroin on Cox & Snell -kertoimen korjattu versio, joka laajentaa mahdollisen arvoalueen arvoon 1 asti. Kertoimien arvoille ei ole mitään täsmällistä tulkintaa. Kuitenkin aina pätee: mitä lähempänä R2-arvo on ykköstä sitä parempi.

SPSS: Toistomittausten varianssianalyysi

Päivitetty 25.9.2020

Jos toistomittausten varianssianalyysi en sinulle entuudestaan tuntematon menetelmä, niin kannattaa lukea ensiksi artikkeli Toistomittausten varianssianalyysi.

Esimerkki. Autovalmistaja testaa automallin polttoaineen kulutusta kolmella erilaisella säädöllä (A, B ja C). Kokeessa käytetään kuutta eri kuljettajaa. Jokainen kuljettaja ajaa kerran kullakin säädöllä. Koska järjestyksellä saattaa olla vaikutusta ajotapaan, niin jokaisella kuljettajalle käytetään erilaista järjestystä (mahdolliset järjestykset ovat ABC, ACB, BAC, BCA, CAB, CBA).

Polttoaineen kulutukset olivat oheisen taulukon mukaiset.

toistomittausaineisto

SPSS ja toistomittausten varianssianalyysi

Kuten muissakin keskiarvoon perustuvissa menetelmissä, niin myös toistomittausten varianssianalyysissä tarkasteltavien muuttujien edellytetään olevan normaalijakautuneita. Isoilla otoksilla (yli 30) asiaa ei yleensä tarvitse murehtia, mutta pienillä otoksilla normaalijakautuneisuus on syytä testata. Testaamiseen voin käyttää Explore-toimintoa. Lue lisää artikkelistani SPSS: Explore. Esimerkkitapauksessamme Explore-toiminnon tuottamien normaalijakaumatestien p-arvot ovat suurempia kuin 0,05, joten normaalijakautuneisuus voidaan olettaa.

toistomittaus8

toistomittaus2

Toistomittausten varianssianalyysiä ei ole SPSS:n peruspaketissa. Toiminto on käytettävissä, jos käytössäsi on Advanced Statistics -lisäpaketti.

  • Valitse Analyze > General Linear Model > Repeated Measures…
  • Kirjoita Within-Subject Factor Name -ruutuun ryhmittelevän tekijän nimi (Säätö) ja Number of Levels -ruutuun ryhmien lukumäärä (3).
  • Napsauta Add-painiketta.
  • Kirjoita Measure name -ruutuun mitattavan ominaisuuden nimi (Kulutus).
  • Napsauta Add-painiketta.
  • Napsauta Define-painiketta, jolloin pääset Repeated Measures -ikkunaan.
  • Siirrä vasemman reunan muuttujat (A, B, C) yksi kerrallan Within-Subjects Variables -ruutuun.

toistomittaus3

Plots-painikkeen takaa kannattaa valita tulostettavaksi kuvio, josta nähdään havainollisesti eri säätöjen keskiarvot. Napsauta Plots, siirrä ryhmittelevä tekijä (Säätö) Horizontal Axis -ruutuun, napsauta Add ja napsauta Continue.

Options-painikkeen takaa kannattaa tehdä muutama asetus: 

toistomittaus4

  • Siirrä ryhmittelevä tekijä (Säätö) Display Means for -ruutuun.
  • Valitse Compare main effects.
  • Valitse Confidence interval adjustment -alasvetovalikosta haluamasi menetelmä parivertailujen laskemiseen. Parivertailujen tekemisessä on sama problematiikka kuin yksisuuntaisessa varianssianalyysissä. Jos et halua perehtyä asiaan syvällisemmin, niin voit valita alasvetovalikosta Bonferroni-korjauksen.
  • Valitse Descriptive statistics tunnuslukutaulukon tulostamiseksi.
  • Napsauta lopuksi Options-ikkunan Continue-painiketta.

Tulostaulukoiden lukeminen

Tuloksena saat häkellyttävän paljon taulukoita, joista kaikkia et luultavasti tarvitse. Seuraavassa käsitellään vain perustapauksessa tarvittavia taulukoita. Descriptive Statistics -taulukosta näet eri säätöihin liittyvien kulutusten keskiarvot ja keskihajonnat.

toistomittaus7

Toistomittausten varianssianalyysiin kuuluu olennaisena osana sfäärisyyden (sphericity) testaaminen. Yksinkertaistaen voisi todeta, että tässä testataan ryhmien välisten erojen varianssien yhtäsuuruutta. Lisätietoa saat englanninkielisen Wikipedian artikkelista Mauchly’s sphericity test.

mauchy

Jos Mauchlyn sfäärisyystestin p-arvo (Sig,) on yli 0,05, niin Tests of Within-Subjects Effects -taulukosta luetaan Sphericity Assumed -riviä. Muussa tapauksessa käytetään esimerkiksi Greenhouse-Geisser -korjattua testiä.

toistomittaus5

Jos Tests of Within-Subjects Effects -taulukon p-arvo (Sig.) on alle 0,05, niin voidaan päätellä, että vähintään yhden parin välillä on merkitsevä ero? Seuraavaksi pitää selvittää minkä parien välillä on merkitsevää eroa. Tämä selviää Pairwise Comparisons -taulukosta. Seuraavaan taulukkoon on laskettu parivertailut Bonferroni-korjausta käyttäen.

toistomittaus6

Säätöjen B (taulukossa 2) ja C (taulukossa 3) kohdalla on merkitsevä ero (p–arvo 0,007). Kulutusten erojen keskiarvon luottamusväli on 0,168 – 0,698 litraa. Muiden parien välillä ei ole merkitsevää eroa.

Analyyseihin sopivat tietokoneohjelmat

Päivitetty 8.11.2019.

Analyysien onnistumiseksi on tärkeää tietää mitä haluat laskea? Jollet tiedä, niin katsele tiekarttoja.

Excel

Excelillä voit laskea lukumäärä- ja prosenttiyhteenvedot, ristiintaulukoinnit sekä tilastolliset tunnusluvut. Lasketuista taulukoista saat helposti havainnollisia graafisia esityksiä. Excelissä on monipuoliset mahdollisuudet tulostaulukoiden ja graafisten esitysten muotoiluun. Tilastollisen merkitsevyyden testaamiseen Excel ei ole paras mahdollinen väline eikä kaikkiin tapauksiin löydy valmista toimintoa.

Jos osaat Excelin perustaidot, niin Excel on luonteva valinta perusanalyyseihin. Tilastollisen merkitsevyyden testaukseen voit käyttää esimerkiksi Pythonia tai SPSS:ää. Excel-muotoon tallennettu data aukeaa Pythonilla tai SPSS:llä.

Python

Jos et karsasta koodaamista, niin kannattaa opetella analysoimaan Python-ohjelmointikielellä. Aikaisempaa ohjelmointi/koodaus-kokemusta et tarvitse. Python  ohjelmakirjastoineen on joustava, tehokas ja ilmainen väline datojen analysointiin, p-arvojen laskentaan ja visualisointiin.

Python sopii erinomaisesti myös koneoppimisen malleihin ja ennakoivaan analytiikkaan.

Lue lisää:

Tilasto-ohjelmat

Tilasto-ohjelmat ovat varta vasten tilastoaineistojen analysointiin tarkoitettuja ohjelmia ja näin ollen varma valinta datan analysointiin. Tilastollisen merkitsevyyden testaus (khiin neliö -testi, t-testit, korrelaation merkitsevyys, Mann-Whitney -testi jne.) sujuu tilasto-ohjelmalla helposti. Tilasto-ohjelmista käytetyimpiä on SPSS.

Pienen opettelun jälkeen SPSS on helppokäyttöinen ohjelma, jolla voit analysoida myös alunperin Excel-muotoon tallennettuja datoja. Graafisten esitysten laatiminen vaatii hieman enemmän opettelua.

Lisätietoa SPSS-tilastohjelmasta.

Nettikyselyohjelmistot

Webropol, SurveyMonkey, Questback ja muut vastaavat ovat nettikyselyn tekemiseen sopivia ohjelmistoja. Niiden avulla saat myös joitain analyysejä nettikyselyn vastauksista. Monipuolisuudeltaan ja joustavuudeltaan ne eivät ole Excelin, Pythonin tai SPSS:n veroisia. Voit hyödyntää niiden tuottamia taulukoita ja graafisia esityksiä harkintasi mukaan. Useimmissa tapauksissa nettikyselyn raakadata täytyy kuitenkin tuoda Exceliin, Pythoniin tai tilasto-ohjelmaan monipuolisempien analyysien tekemiseksi.

Lisätietoa Webropolista.

Pääsääntö

Pääsääntö: Käytetty tietokoneohjelma ei ole itsetarkoitus. Olennaista on, että käytät tilanteeseen sopivia menetelmiä, olet huolellinen sekä esität tulokset selkeästi ja havainnollisesti.

Tiekartat

Päivitetty 24.1.2020

Datoja jalostetaan ja analysoidaan, jotta saadaan käyttökelpoista, havainnollista ja ymmärrettävää tietoa päätöksenteon tueksi ja perusteluksi.

Analysoitavia datoja saadaan erilaisista lähteistä, esimerkiksi

  • mittalaitteilla mitattuja ilmansaasteiden pitoisuuksia
  • kyselylomakkeella kerättyjä mielipiteitä
  • kokeellisella tutkimusasetelmalla kerättyjä havaintoja
  • verkkosivuston käyttötilastoja
  • yrityksen tietokannasta poimittuja myyntitapahtumia
  • internetin tietokannoista löytyviä tilastoja.

Datoja jalostetaan ja analysoidaan, jotta saadaan käyttökelpoista, havainnollista ja ymmärrettävää tietoa päätöksenteon tueksi ja perusteluksi. Analysointiin käytetään samoja menetelmiä datan lähteestä riippumatta.

Analyysit aloitetaan muuttujakohtaisilla tarkasteluilla muuttuja kerrallaan (kuvaileva analytiikka). Joissain tapauksissa  muuttujakohtaiset tarkastelut riittävät, mutta yleensä analyyseissä edetään riippuvuuksien tarkasteluun (selittävä analytiikka). Yksinkertaisimmillaan  tarkastellaan kahden muuttujan välistä riippuvuutta. Jos toinen muuttujista on kategorinen, niin riippuvuuden sijasta voidaan puhua ryhmien vertailusta: kategorisen muuttujan arvot määräävät ryhmät, joiden välillä toisen muuttujan arvoja vertaillaan. Jos molemmat muuttujat ovat määrällisiä niin riippuvuutta voidaan kutsua korrelaatioksi ja sen voimakkuutta mitataan korrelaatiokertoimen avulla.

Edellä todetun perusteella voin jaotella perusanalyysit seuraavasti:

tiekartta1

Vaativammassa analyysissä käytetään monimuuttujamenetelmiä, joissa analysoidaan useamman muuttujan välisiä riippuvuuksia samanaikaisesti.

Seuraavassa luettelen kuhunkin analyysityyppiin liittyviä menetelmiä. Ryhmittelen menetelmät sen mukaan minkälaisille mitta-asteikoille ne sopivat. Käyttämäni mitta-asteikot ovat

  • Kategorinen: Muuttujan arvot luokittelevat havaintoyksiköt toisensa poissulkeviin kategorioihin/luokkiin. Tällaista mitta-asteikkoa kutsutaan myös luokitteluasteikoksi, nominaaliasteikoksi ja laatueroasteikoksi. Esimerkki: Henkilön ammatti.
  • Järjestysasteikollinen: Jos kategoriat/luokat voidaan asettaa yksikäsitteiseen suuruus, paremmuus tai muuhun järjestykseen, niin kyseessä on järjestysasteikko. Tällaista mitta-asteikkoa kutsutaan myös ordinaaliasteikoksi. Esimerkki: Hotelliluokituksessa hotellin saama tähtien määrä.
  • Määrällinen: Muuttujan arvot mittaavat mitattavan ominaisuuden määrää numeroasteikolla. Määrälliset muuttujat kattavat sekä välimatka-asteikolliset (intervalliasteikolliset) että suhdeasteikolliset muuttujat. Esimerkki: Henkilön kuukausipalkka.
  • Mielipideasteikko: Mielipideasteikko on järjestysasteikko, mutta monissa tapauksissa sen voidaan ajatella mittaavan mielipiteen, esimerkiksi tyytyväisyyden, määrää numeroasteikolla. Tällöin mielipideasteikko voidaan tulkita määrälliseksi ja määrällisille muuttujille soveltuvia menetelmiä voidaan käyttää. Esimerkki: Tyytyväisyys asiakaspalvelun ystävällisyyteen asteikolla 1-5 (1=erittäin tyytymätön, 5=erittäin tyytyväinen).

Yhden muuttujan tarkastelu

Datan analysoinnin aloitan muuttujakohtaisilla tarkasteluilla.

  • Kategorisille muuttujille lasken lukumäärä- ja prosenttitaulukot. Lukumäärä- ja prosenttitaulukosta käytetään myös nimityksiä yhteenvetotaulukko ja frekvenssitaulukko. Taulukoinneissa pääset hyvään alkuun lukemalla artikkelin Taulukointi.
  • Järjestysasteikollisille muuttujille voin lukumäärä- ja prosenttitaulukoiden lisäksi laskea viiden luvun yhteenvedon.
  • Määrällisille muuttujille lasken tunnuslukuina keskiarvon, keskihajonnan ja viiden luvun yhteenvedon. Tunnusluvuissa pääset hyvään alkuun lukemalla artikkelin Tunnuslukuja.

tiekart2

Mielipideasteikot (esimerkiksi 1-5, täysin eri mieltä – täysin samaa mieltä) ovat järjestysasteikoita, mutta tietyin varauksin voin käyttää keskiarvoa ja keskihajontaa. Voit lukea lisää artikkelista Mielipideasteikon keskiarvo.

Jos analysoitava data on otos laajemmasta perusjoukosta, niin kannattaa laskea prosenttiosuuksille ja keskiarvoille luottamusvälit. Luottamusväli ilmaisee epävarmuuden yleistettäessä prosenttiosuus tai keskiarvo laajempaan perusjoukkoon. Lisätietoa prosenttiosuuden luottamusvälistä artikkelissa Prosenttiosuuden luottamusväli ja keskiarvon luottamusvälistä artikkelissa Keskiarvon virhemarginaali.

Kahden ryhmän vertailu – riippumattomat ryhmät

Päädyn vertailemaan kahta ryhmää esimerkiksi seuraavissa tapauksissa:

  • Haluan verrata kyselytutkimusdatan perusteella miesten ja naisten mielipiteitä.
  • Haluan verrata kokeellisen tutkimuksen keinoin ovatko alkoholia nauttineiden reaktioaikojen keskiarvot samat kuin alkoholia nauttimattomien.

Jos mitattava muuttuja on kategorinen, niin vertaan lukumääriä ja/tai prosentteja ristiintaulukoimalla ryhmittelevän muuttujan ja mitattavan muuttujan. Hyvään alkuun ristiintaulukoinneissa pääset lukemalla artikkelin Ristiintaulukointi. Jos mitattava muuttuja on määrällinen, niin yleensä vertaan keskiarvoja. Myös mielipideasteikon tapauksessa voin tietyin varauksin verrata keskiarvoja. Lisätietoa artikkelissa Kahden riippumattoman otoksen vertailu.

tiekart3

Tarvittaessa voin testata ryhmien välisen eron merkitsevyyttä. Testaamisella varmistan, onko otoksessa havaittu ero niin suuri, ettei se voi aiheutua pelkästä otantavirheestä, vaan taustalla on ryhmien todellinen ero perusjoukossa. Lisätietoa artikkelissa Onko ryhmien välinen ero tilastollisesti merkitsevä.

Useamman ryhmän vertailu – riippumattomat ryhmät

Jos vertailtavia ryhmiä on useampia, niin järjestysasteikollisen ja määrällisen muuttujan tapauksessa testimenetelmät ovat erilaiset kuin kahden ryhmän vertailussa.

tiekart4

Lisätietoa testimenetelmistä artikkelissa Onko ryhmien välinen ero tilastollisesti merkitsevä.

Kahden ryhmän vertailu – riippuvat ryhmät

Kokeellisessa tutkimuksessa päädytään usein vertailemaan toisistaan riippuvia ryhmiä. Jos riippumattoman ja riippuvan ero ei ole sinulle selvä, niin lue artikkeli Riippumattomat vai riippuvat otokset.

tiekart5

Lisätietoa testimenetelmistä artikkelissa Onko ryhmien välinen ero tilastollisesti merkitsevä.

Useamman ryhmän vertailu – riippuvat ryhmät

Useamman riippuvan ryhmän vertailua tarvitaan lähinnä kokoeellisessa tutkimuksessa.

tiekart6

Lisätietoa testimenetelmistä artikkelissa Onko ryhmien välinen ero tilastollisesti merkitsevä.

Korrelaatio

Korrelaatio tarkoittaa kahden muuttujan välistä riippuvuutta.

  • Kategoristen muuttujien välistä korrelaatiota tarkastelen ristiintaulukoimalla. Tätä jo tarkastelin aiemmin ryhmien vertailun yhteydessä.
  • Jos toinen tai molemmat muuttujista ovat järjestysasteikollisia, niin voin laskea Spearmanin järjestyskorrelaation. Joissain tapauksissa Spearmanin järjestyskorrelaatio on sopiva menetelmä myös mielipideasteikollisille muuttujille. Järjestyskorrelaatiosta lisää artikkelissa Spearmanin järjestyskorrelaatio.
  • Jos molemmat muuttujat ovat määrällisiä, niin tarkastelen riippuvuutta hajontakaavioiden ja korrelaatiokertoimien avulla. Tästä lisää artikkelissa Korrelaatio ja sen merkitsevyys.

tiekart7

Tarvittaessa voin testata riippuvuuden/korrelaation merkitsevyyttä. Testaamisella varmistan, onko otoksessa havaittu riippuvuus/korrelaatio niin suuri, ettei se voi aiheutua pelkästä otantavirheestä, vaan taustalla on todellinen riippuvuus/korrelaatio perusjoukossa. Lisätietoa testaamisesta artikkelissa Korrelaatio ja sen merkitsevyys.

Mallit ja ennakoiva analytiikka

Edellä mainitut menetelmät sopivat kuvailevaan ja selittävään analytiikkaan. Tarvittaessa voidaan edetä pidemmälle:

  • Sovittamalla dataan havaittuja eroja ja riippuvuuksia selittäviä malleja.
  • Ennakoimalla tulevaa malleista laskettujen ennusteiden avulla.

Muuttujien mitta-asteikot vaikuttavat mallin valintaan:

  • Jos selitettävä muuttuja on määrällinen, niin kyseeseen tulevat erilaiset regressiomallit.
  • Jos selitettävä muuttuja on kategorinen, niin kyseeseen tulevat erilaiset luokittelumallit, esimerkiksi logistinen regressio.
  • Jos selitettävä muuttuja puuttuu, niin kyseeseen tulevat erilaiset klusterointimallit, esimerkiksi K-means klusterointi.

SPSS: Friedman-testi

Päivitetty 26.9.2020

Useamman kuin kahden riippuvan otoksen välisen eron merkitsevyyttä voin testata toistomittausten varianssianalyysillä. Varianssianalyysin käyttökelpoisuus on kyseenalaista ainakin seuraavissa tapauksissa:

  • Otoskoot ovat pieniä (alle 30) eikä ole varma ovatko tarkasteltavat muuttujat normaalijakautuneet perusjoukossa.
  • Tarkasteltavat muuttujat ovat mielipideasteikollisia. Jos olen sitä mieltä, että keskiarvo ei ole sopiva tunnusluku mielipideasteikolle, niin varianssianalyysi ei tule kyseeseen.

Varianssianalyysin sijasta voin käyttää Friedman-testiä, jonka kohdalla ei tarvitse olettaa normaalijakautuneisuutta. Friedman-testi soveltuu hyvin mielipideasteikoille.

Excelissä ei ole valmista toimintoa Friedman-testin laskemiseen. Onneksi versiosta 18 lähtien SPSS on sisältänyt erittäin helppokäyttöisen ja havainnollisen tavan testin laskemiseen. Vaikka suorittaisitkin muut analyysit Excelissä, niin tämän testin osalta kannattaa piipahtaa SPSS:n puolella. Tämä on helppoa vaikka et olisi aiemmin SPSS:ää käyttänytkään. Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Excel-datan avaaminen

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta aineisto löytyy.
  • OK.

Muuttujien mitta-asteikon tarkistaminen

Siirry Variable View -näkymään napsauttamalla vastaavaa välilehteä SPSS-ikkunan alareunassa. Tarkista tarkasteltavien muuttujien mitta-asteikko Measure-sarakkeesta. Jos mitta-asteikko on Nominal tai Ordinal, niin vaihda asteikoksi Scale.

Miksi tarkasteltavien muuttujien mitta-asteikon täytyy olla Scale? Testin taustaoletuksena on, että muuttuja on perimmiltään jatkuvaluonteinen. Esimerkiksi 5-portaisen tyytyväisyys-asteikon arvot eivät sellaisenaan ole jatkuvaluonteisia. Tässä kuitenkin riittää se, että oletetaan tyytyväisyys jatkuvaluonteiseksi muuttujaksi, vaikka sitä mitataankin tarkkuudella 1, 2, 3, 4, 5.

Testin suorittaminen

Seuraavassa on käytetty SPSS-muotoista kahvi.sav -dataa (tallenna data tietokoneellesi ja avaa se sen jälkeen SPSS-ohjelmaan).

friedman0

Datassa on yhdeksän arvioijan arviot (eri arviointikohteiden yhteispistemäärä) neljästä kahvimerkistä (A, B, C ja D). Kahvimerkkien eroja voisi testata toistomittausten varianssianalyysillä, mutta normaalijakautuneisuuden testaus osoittaa normaalijakautuneisuuden kyseenalaiseksi kahvimerkin B kohdalla (Shapiro-Wilk -testin p-arvo 0,017). Voit lukea lisää normaalijakautuneisuuden testaamisesta artikkelistani SPSS: Explore.

friedman1

Friedman-testin laskeminen sujuu seuraavasti:

  • Valitse valikosta Analyze – Nonparametric Tests – Related Samples. Avautuvan Nonparametric Tests: Two or More Related Samples -ikkunan yläreunassa on kolme välilehteä: Objective, Fields ja Settings.
  • Valitse Objective-välilehdeltä Automatically compare observed data to hypothesized.
  • Valitse Fields-välilehdeltä vaihtoehto Use custom field assignments ja siirrä tarkasteltavat muuttujat Test Fields: -ruutuun.
  • Napsauta Run-painiketta.

Testin tulkinta

Testin tulosteena saat havainnollisen tulostaulukon.

friedman2

Taulukosta löytyy testattu nollahypoteesi, testimenetelmän nimi (Friedman’s…), p-arvo ja testin johtopäätös. Johtopäätöksen kriteerinä SPSS käyttää oletusarvoisesti merkitsevyystasoa 0,05 (nollahypoteesi hylätään, jos p-arvo on alle 0,05). Merkitsevyystason voit halutessasi vaihtaa Settings-välilehden Test Options -kohdasta.

Testin mukaan ainakin joidenkin kahvimerkkien välillä on eroa (p-arvo < 0,01). SPSS tarjoaa lisätietoa ja graafisia havainnollistuksia Model Viewer -ikkunassa jos kaksoisnapsautat tulostaulukkoa. Jos valitset Model Viewer -ikkunan View-alasvetovalikosta (kahdesta View-alasvetovalikosta oikeanpuoleinen) Pairwise Comparisons, niin saat parivertailut:

friedman3

Parivertailujen korjatut p-arvot (Adj. Sig.) on laskettu jakamalla parivertailun p-arvo vertailtavien parien kokonaismäärällä (6). Korjattujen p-arvojen mukaan merkitseviä eroja on kahvimerkkien D ja A, D ja B sekä C ja B välillä.

Toistomittausten varianssianalyysi

Päivitetty 25.4.2019.

Jos tarkoituksena on tutkia aiheuttavatko käsittelyt eroja tutkittavien ominaisuuksiin, niin keskeisimmät tutkimusasetelmat ovat:

Satunnaistettu koe (completely randomized design): Jokaista käsittelyä varten arvotaan oma ryhmä tutkittavia. Tällöin analyysimenetelmänä käytetään yksisuuntaista varianssianalyysiä.

Toistomittaus (repeated measures design): Käytetään samaa tutkittavien joukkoa eri käsittelyillä. Tätä kutsutaan toistomittaukseksi, koska samoja tutkittavia mitataan toistuvasti eri käsittelyillä. Tällöin analyysimenetelmäksi sopii toistomittausten varianssianalyysi. Esimerkiksi kolmen erilaisen moottorin säädön vaikutusta polttoaineen kulutukseen voidaan tutkia kuuden eri kuljettajan avulla siten, että kukin kuljettaja ajaa testilenkin jokaisella säädöllä. Mittaus toistetaan siis kullekin kuljettajalle 3 kertaa, mutta jokaisella kerralla on erilainen säätö.

Satunnaistettu lohkokoe (randomized block design): Jos tiedetään, että jokin tutkittavien ominaisuus vaikuttaa mittauksen kohteena oleviin muuttujiin, niin tutkittavat voidaan jakaa kyseisen ominaisuuden mukaan samanlaisiin lohkoihin. Esimerkiksi samaan pikaruokaketjuun kuuluvien neljän ravintolan eroja voidaan arvioida jakamalla arvioijat kokemuksen mukaan kuuteen eri lohkoon seuraavasti:

  • ensimmäiseen lohkoon otetaan vain kaikkein kokeneimmat arvioijat
  • toiseen lohkoon otetaan hieman vähemmän kokeneet arvioijat jne.
  • kuudenteen lohkoon otetaan kaikkein vähiten kokemusta omaavat arvioijat
  • kuhunkin lohkoon otetaan neljä arvioijaa, koska arvoitavia ravintoloita on neljä
  • samaan lohkoon kuuluville neljälle arvioijalle arvotaan satunnaisesti arvioitavat ravintolat.

Asetelmalla pyritään kontrolloimaan arvioijan kokemuksen vaikutusta arvioihin. Myös tähän asetelmaan sopii analyysimenetelmäksi toistomittausten varianssianalyysi.

Yksisuuntaisen varianssinalyysin ja toistomittausten varianssianalyysin keskeinen ero

anova10Yksisuuntaisessa varianssianalyysissä mittaustulosten vaihtelu jaetaan ryhmien (kutakin käsittelyä vastaa yksi ryhmä) väliseen ja ryhmien sisäiseen vaihteluun. Kyseessä on malli, jossa pyritään selittämään vaihtelu ryhmien (käsittelyjen) eroilla ja tässä mallissa kaikki muu kuin ryhmien välinen vaihtelu on luettavissa virhevaihteluksi.

Toistomittausten varianssianalyysissä erotetaan ryhmien sisäisestä vaihtelusta lohkojen välinen vaihtelu ja muu osa ryhmien sisäisestä vaihtelusta luetaan virhevaihteluksi. Kyseessä on malli, jossa pyritään selittämään vaihtelu ryhmien eroilla ja lohkojen eroilla. Muu kuin ryhmien välinen ja lohkojen välinen vaihtelu luetaan virhevaihteluksi. Virhevaihtelu jää pienemmäksi kuin yksisuuntaisessa varianssianalyysissä, koska lohkojen välinen vaihtelu otetaan malliin mukaan.
anova11
Ryhmien välisten erojen merkitsevyyttä mitataan ryhmien välisen vaihtelun ja virhevaihtelun suhteena. Jos ryhmien vaihtelu on riittävän paljon virhevaihtelua suurempi, niin sillon ryhmien välisiä eroja voidaan pitää merkitsevinä. On siis olennaista, että käytetään mallia, jossa virhevaihtelu saadaan mahdollisimman pieneksi. Näin ollen toistomittausasetelmassa ja satunnaistetussa lohkoasetelmassa kannatta aina käyttää toistomittausten varianssianalyysiä yksinkertaisen varianssianalyysin sijasta.

Toistomittausten varianssianalyysi Excelillä

anova16

Esimerkki. Auton polttoaineen kulutusta verrattin kolmella erilaisella moottorin säädöllä A, B ja C. Testikuljettajina oli 6 kuljettajaa, jotka ajoivat arvotussa järjestyksessä testilenkin kullakin säädöllä. Mitatut kulutukset (litraa sadalla kilomertrilla) olivat oheisen taulukon mukaiset.

Excelin analyysityökalujen avulla voin laskea toistomittausten varianssianalyysin. Jos et ole aiemmin ottanut analyysityökaluja käyttöön, niin voit tehdä sen seuraavasti:

  • Valitsen File – Options (Tiedosto – Asetukset).
  • Valitsen Add Ins (Apuohjelmat) ja valitsen alhaalta Manage (Hallinta) -ruudusta Excel Add Ins (Excel-apuohjelmat).
  • Valitsen Go (Siirry).
  • Valitsen luettelosta Analysis Toolpak (Analyysityökalut) ja valitsen OK.
  • Tämän jälkeen löydän Data (Tiedot) -välilehdeltä analyysityökalut (Data Analysis).

Analyysityökaluista löydän toistomittausten varianssianalyysin nimellä Anova: Two-Factor Without Replication (Anova: kaksisuuntainen ilman toistoa). Nimitys kaivannee hieman selitystä: ’kaksisuuntainen’ viittaa siihen, että yhteisvaihtelua selitetään kahdella tekijällä, käsittelyllä ja tutkittavien/lohkojen eroilla; ’ilman toistoa’ viittaa siihen, että kullakin käsittelyn ja tutkittavan/lohkon yhdistelmällä on vain yksi mittaus.

Täytän Anova-ikkunaan syöttöalueen (Input Range). Syöttöalueeksi valitsen kaikki kulutukset sekä rivi- ja sarakeotsikot. Lisäksi määritän, että otsikot huomioidaan (Labels).

anova14

Excel tulostaa keskiarvot ja varianssit sekä ANOVA-taulukon, joka näyttää seuraavalta:

anova15

ANOVA-taulukossa vaihtelu on jaettu kolmeen osaan:

  • rivien eli tässä tapauksessa kuljettajien väliseen vaihteluun (SS=0,55205)
  • sarakkeiden eli tässä tapauksessa säätöjen väliseen vaihteluun (SS=0,573333)
  • muuhun vaihteluun eli virhevaihteluun (SS=0,196067).

Mitä suurempi säätöjen välinen vaihtelu on virhevaihteluun verrattuna, sitä merkitsevämpiä eroja säätöjen välillä on. Tämä testataan F-testillä, jonka p-arvon voin lukea taulukosta.

Esimerkin tapauksessa ainakin kahden säädön välillä on merkitsevä ero (p-arvo 0,001).

On opettavaista ainakin kerran tutustua ANOVA-taulukon johtamiseen ja erityisesti vaihtelua mittaavien neliösummien (SS, sum of squares) laskemiseen. Voit tutustua ANOVA-taulukon johtamiseen Excel-tiedoston anovakaavat.xlsx avulla. Olen laskenut tiedostoon Excelin kaavoilla kaikki ANOVA-taulukossa oleva luvut. Tiedostosta löytyy laskettu esimerkki myös satunnaistetusta lohkokokeesta.

Käyttöedellytykset

Toistomittausten varianssianalyysiä koskee sama käyttöedellytys kuin muitakin keskiarvon käyttöön perustuvia menetelmiä: otoskeskiarvojen täytyy olla peräisin likimain normaalijakaumasta. Jos ryhmät ovat isoja (vähintään 30), niin normaalijakautuneisuus ei yleensä ole ongelma. Jos ryhmät ovat pieniä, voin arvioida normaalijakautuneisuutta otoksen arvojen jakauman perusteella (histogrammi, ruutu- ja janakaavio). Epäselvissä tapauksissa kannattaa testata normaalijakautuneisuus SPSS:llä. Ohjeet laatikkokaavion tekemiseen ja normaalijakautuneisuuden testaamiseen löydät artikkelistani SPSS: Explore.

Toisena käyttöedellytyksenä on niin kutsuttu sfäärisyys (sphericity). Yksinkertaistaen voisi todeta, että tässä on kyse ryhmien välisten erojen varianssien yhtäsuuruudesta. Sfäärisyyden testaamiseen ei ole toimintoa Excelissä. Lue lisää artikkelista SPSS: Toistomittausten varianssianalyysi.

Jos käyttöedellytykset eivät täyty, niin voin käyttää SPSS:n Friedman-testiä.

Parivertailut

Varianssianalyysi kertoo onko ryhmien keskiarvojen välillä merkitseviä eroja. Sen sijaan varianssianalyysi ei kerro minkä ryhmien välillä on merkitseviä eroja. Arvailuja voin tehdä ryhmien keskiarvojen perusteella. Tarkempaan analyysiin tarvitsen parivertailuja. Excel ei tarjoa valmiita työkaluja parivertailujen tekemiseen. SPSS sisältää menetelmiä parivertailujen tekemiseen. Lue lisää artikkelista SPSS: Toistomittausten varianssianalyysi.

Prosenttiosuuden luottamusväli

Päivitetty 25.4.2019.

Otoksesta laskettu prosenttiosuus kertoo prosenttiosuuden otoksessa. Jos yleistän otoksesta lasketun prosenttiosuuden laajempaan perusjoukkoon, niin minun täytyy huomoida otantavirheen aiheuttama epävarmuus. Otantavirheen aiheuttaman epävarmuuden ilmaisen virhemarginaalin avulla. Voin arvioida 95 % virhemarginaalin seuraavasti:

cipros

Kaavassa n tarkoittaa otoskokoa ja p otoksesta laskettua prosenttiosuutta desimaalimuodossa. Jos np>10 ja n(1−p)>10, niin voin pitää kaavan antamaa arviota hyvänä. Jos esimerkiksi otoskoko on 100, niin kaava antaa hyviä arvioita virhemarginaalille prosenttiosuuden ollessa 10 % ja 90 % välillä. Monissa lähteissä ehdosta esitetään lievempi versio np>5 ja n(1-p)>5.

Voit käyttää virhemarginaalin laskentaan Exceliin laatimaani laskuria virhemarginaali.xlsx. Laskuri laskee prosenttiosuuden virhmarginaalin, jos annat otoksesta lasketun prosenttiosuuden ja otoskoon.

Esimerkki. Uuden ydinvoimalan kannattajien osuus oli 800 henkilön kyselytutkimuksessa 40,8 %. Virhemarginaaliksi lasken

ciproses

Usein virhemarginaalin pohjalta muodostetaan luottamusväli. Luottamusvälin alarajan saan vähentämällä otosprosenttiosuudesta virhemarginaalin ja ylärajan saan lisäämällä otosprosenttiosuuteen virhmarginaalin

Esimerkki. Edellisen esimerkin tapauksessa 95 % luottamusväli on 0,374 – 0,442. Tärmä tarkoittaa sitä että 95 % varmuudella todellinen prosenttiosuus sisältyy luottamusväliin 37,4 % – 44,2 %.

Mihin virhemarginaalin laskenta perustuu

Esimerkiksi uuden ydinvoimalan kannattajien lukumäärä otoksessa noudattaa binomijakaumaa. Binomijakauma seuraa siitä, että jokainen otokseen otettu joko kannattaa uutta ydinvoimalaa tai ei. Binomijakaumahan on nimen omaan jakauma tällaisille kaksiarvoisille tilanteille. Binomijakaumaa voidaan isoilla otoksilla approksimoida normaalijakauman avulla (edellä mainitut ehdot np>10 ja n(p-1)>10 takaavat, että approksimaatio on riittävän hyvä käytännön sovelluksiin). Voidaankin siis todeta, että isoilla otoksilla otoksesta laskettu prosenttiosuus on peräisin likimain normaalijakaumasta. Kyseisen normaalijakauman keskihajonta eli prosenttiosuuden keskivirhe on

proskeskivirhe

Normaalijakauman ominaisuuksista seuraa, että otoksesta laskettu prosenttiosuus on 95 % varmuudella korkeintaan 1,96 keskivirheen päässä jakauman keskiarvosta eli perusjoukon todellisesta prosenttiosuudesta.

normaali

Kääntäen, 95 % varmuudella perusjoukon todellinen prosenttiosuus on korkeintaan 1,96 keskivirheen päässä otosprosenttiosuudesta. Tällä perusteella prosenttiosuuden 95 % virhemarginaali on 1,96 keskivirhettä.

Normaalijakaumaan liittyvä arvo 1,96 on likiarvo. Tarkemman arvon voit laskea Excelin funktiolla

=NORM.S.INV(97,5%) (suom. NORM_JAKAUMA.KÄÄNT)

Funktion argumenttina voi käyttää myös 2,5%, mutta tällöin vastaus tulee negatiivisella etumerkillä varustettuna.

Tärkeää

Virhemarginaalin arvo on luotettava ainoastaan jos otos on valittu perusjoukosta asianmukaista otantamenetelmää käyttäen.

Muita menetelmiä virhemarginaalin arviointiin

Kuten aiemmin totesin, niin pienillä otoksilla tai pienillä/suurilla prosenttiosuuksilla edellä esitettyä approksimaatiota ei voi pitää hyvänä. On kehitetty useita vaihtoehtoisia ja parempia (ja mutkikkaampia) menetelmiä prosenttiosuuden virhemarginaalin arviointiin. Lisätietoa englanninkielisen Wikipedian artikkelista Binomial proportion confidence interval ja artikkelista The Annals of Statistics 2002, Vol. 30, No. 1, 160–201: Confidence intervals for a binomial proportion and asymptotic expansions.

SPSS ja prosenttiosuuden luottamusväli

SPSS ei sisällä yksinkertaista toimintoa prosenttiosuuden luottamusvälin laskentaan. Tämä on luonnollisesti aiheuttanut monien mielissä ihmetystä. Lue IBM:n vastaus asiasta esitettyyn kysymykseen: http://www-01.ibm.com/support/docview.wss?uid=swg21474963.

Korrelaatio – lisätietoa

Päivitetty 19.4.2019.

Kovarianssi

Kahden muuttujan, x ja y, välisen suoraviivaisen riippuvuuden voimakkuutta voidaan mitata laskemalla kovarianssi:

kovar

Osoittajassa lasketaan x:n ja y:n arvojen poikkeamia keskiarvostaan, kerrotaan poikkeamat keskenään ja lasketaan tulot yhteen. Lopuksi jaetaan vapausastemäärällä (otoskoko-1), jolloin saadaan keskimääräinen poikkeamien tulo eli kovarianssi. Yksi vapausaste on menetetty keskiarvon laskennassa. Huomaathan, että muuttujan kovarianssi itsensä kanssa on sama kuin varianssi. Seuraavassa yritän perustella, miksi kovarianssi sopii suoraviivaisen riippuvuuden mittaamiseen?

Jos hajontakaavioon piirretään pystyviiva kuvaamaan x-arvojen keskiarvoa ja vaakaviiva kuvaamaan y-arvojen keskiarvoa, niin viivat rajaavat neljä neljännestä:

kovarianssinperustelu

  • I neljänneksessä x:n ja y:n poikkeamat keskiarvostaan ovat positiivisia ja näin ollen poikkeamien tulo on positiivinen.
  • III neljänneksessä x:n ja y:n poikkeamat keskiarvostaan ovat negatiivisia ja näin ollen poikkeamien tulo on positiivinen.
  • II neljänneksessä x:n poikkeamat keskiarvostaan ovat negatiivisia ja y:n poikkeamat keskiarvostaan positiivisia. Näin ollen poikkeamien tulo on negatiivinen.
  • IV neljänneksessä x:n poikkeamat keskiarvostaan ovat positiivisia ja y:n poikkeamat keskiarvostaan negatiivisia. Näin ollen poikkeamien tulo on negatiivinen.

Jos havainnot keskittyvät I ja III neljännekseen, niin kovarianssi on positiivinen (vasemmanpuoleinen kuva). Jos havainnot keskittyvät II ja IV neljännekseen, niin kovarianssi on negatiivinen. Jos havainnot jakautuvat tasaisesti kaikkiin neljänneksiin, niin kovarianssi on likimain nolla.

Pearsonin korrelaatiokerroin

Eri tyyppisten muuttujien välisiä kovariansseja ei voi vertailla keskenään, koska muuttujien mittayksiköt vaikuttavat kovarianssin arvoon. Vertailun mahdollistamiseksi lasketaan kovarianssia hyväksi käyttäen Pearsonin korrelaatiokerroin, joka on muuttujien mittayksiköistä riippumaton tunnusluku. Puhuttaessa korrelaatiokertoimesta tarkoitetaan yleensä juuri Pearsonin korrelaatiokerrointa. Pearsonin korrelaatiokerroin lasketaan jakamalla kovarianssi keskihajontojen tulolla.

korrelaationkaava

Muuttujien järjestys (kumman valitset x-muuttujaksi, kumman y-muuttujaksi) ei vaikuta korrelaatiokertoimen arvoon. Keskihajontojen tulolla jakaminen normittaa korrelaatiokertoimen sellaiseksi, että se voi saada ainoastaan arvoja -1:n ja +1:n väliltä.

korrelaationarvot

  • Korrelaatiokertoimen arvo +1 saavutetaan silloin, kun kaikki hajontakaavion pisteet sijaitsevat samalla nousevalla suoralla.
  • Korrelaatiokertoimen arvo -1 saavutetaan silloin, kun kaikki pisteet sijaitsevat samalla laskevalla suoralla.
  • Korrelaatiokertoimen arvo 0 merkitsee, ettei muuttujien välillä ole lainkaan suoraviivaista riippuvuutta. Tällöin muuttujien välillä voi toki olla muunlaista kuin suoraviivaista riippuvuutta.

Mitä kauempana korrelaatiokerroin on nollasta, sitä voimakkaammasta suoraviivaisesta riippuvuudesta on kyse.

Korrelaatiokertoimen merkitsevyyden testaaminen

Korrelaation merkitsevyyden testaamiseen liittyvän p-arvon laskenta perustuu seuraavaan testimuuttujaan:

korrelaatiotestimuuttuja

Voidaan osoittaa, että korrelaation ollessa nolla kyseinen testimuuttuja noudattaa Studentin t-jakaumaa vapausastein n-2. Lisätietoa Studentin t-jakaumasta englanninkielisessä Wikipediassa Student’s t-distribution. P-arvo on  todennäköisyys saada kyseisestä t-jakaumasta testimuuttujan suuruinen tai vielä kauempana nollasta oleva arvo. Mitä pienempi p-arvo, sitä enemmän saadaan tukea sille, että korrelaatio on nollasta poikkeava.

Vakiintuneen tavan mukaisesti alle 0,05 (5 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa esiintyvän korrelaation puolesta.

Voit käyttää laatimaani laskentapohjaa testaa_korrelaatio.xlsx p-arvon ja luottamusvälin laskentaan. Lähtötietoina tarvitaan korrelaatiokerroin ja otoskoko.

Korrelaatiokertoimen luottamusväli

Korrelaatiokertoimen luottamusvälin laskeminen on hankalahko tehtävä. Excel-pohja testaa_korrelaatio.xlsx laskee luottamusvälin alarajan ja ylärajan, kun lähtötietoina on korrelaatiokerroin ja otoskoko. Laskentapohjassa käytän kaavaa, jonka johtamisen löydät Ilkka Mellinin (2006) monisteesta Tilastolliset menetelmät: Regressioanalyysi sivulta 256.

Khiin neliö -testi – lisätietoa

Päivitetty 25.4.2019.

Tämä artikkeli sisältää lisätietoa artikkeliin 6 Ristiintaulukointi ja khiin neliö -testi.

Khiin neliö -testimuuttujan laskemiseksi tarvitaan havaitut frekvenssit ja odotetut frekvenssit. Testimuuttuja lasketaan kaavalla:

khinelio

Kaavassa i edustaa yksittäisen havainnon järjestysnumeroa ja n havaintojen kokonaismäärää. Kaavassa Oi edustaa havaittua frekvenssiä (Observed) ja Ei odotettua frekvenssiä (Expected). Khiin neliö -testimuuttujan arvo on sitä suurempi mitä enemmän havaitut frekvenssit poikkeavat odotetuista frekvensseistä. Voidaan osoittaa, että khiin neliö -testimuuttuja noudattaa likimain khiin neliö -jakaumaa vapausastein
(rivien määrä -1)×(sarakkeiden määrä -1)

Jos perusjoukossa riippuvuutta/eroa ryhmien välillä ei ole (nollahypoteesi pitää paikkansa), niin suuret khiin neliö -testimuuttujan arvot ovat epätodennäköisiä.

khijakauma

Kuvio 1. Khiin neliö -jakaumia eri vapausasteilla k (Lähde: http://en.wikipedia.org/wiki/File:Chi-square_pdf.svg)

Kannattaa katsoa KhanAcademyn havainnollinen video khiin neliö -jakauamasta.

Jakaumasta voidaan laskea todennäköisyys havaitun suuruisen tai vielä suuremman testimuuttujan arvon saamiseen. Tätä todennäköisyyttä kutsutaan p-arvoksi. Mitä pienempi p-arvo sitä enemmän vaihtoehtoinen hypoteesi (perusjoukossa on riippuvuutta/eroa ryhmien välillä) saa tukea. Testi on yksisuuntainen, koska kiinnostuksen kohteena on ainoastaan jakauman oikea reuna. Testattavaa hypoteesia voidaan kuitenkin pitää kaksisuuntaisena:

Nollahypoteesi: Testimuuttujan arvo on 0
Vaihtoehtoinen hypoteesi: Testimuuttujan arvo on eri suuri kuin 0.

Testimuuttujan laskennassa toiseen potenssiin korotuksesta seuraa, että testimuuttuja on aina ei-negatiivinen. Tästä taas seuraa, että testaus onkin yksisuuntainen. Ei siis kannata hämmentyä, jos toisaalla väitetään khiin neliö -testiä aina yksisuuntaiseksi ja toisaalla taas khiin neliö -testin p-arvoa kutsutaan kaksisuuntaiseksi (esimerkiksi SPSS). Molemmissa tapauksissa on kyse täsmälleen samasta ja samalla tavalla laskettavasta testistä.

Khiin neliö -testistä voit lukea artikkelista 6 Ristiintaulukointi ja khiin neliö -testi.

Kahden riippumattoman otoksen vertailu – lisätietoa

Päivitetty 25.4.2019.

Kahden riippumattoman otoksen t-testissä tarkastellaan kahden ryhmän keskiarvojen erotusta:

Nollahypoteesi: μ1 – μ2 = 0 (ryhmien välillä ei eroa)

Jos asiaa tutkitaan otosten avulla, niin käytännössä otoskeskiarvojen erotus on lähes aina nollasta poikkeava. Keskeinen kysymys: Milloin otoskeskiarvojen erotus poikkeaa niin paljon nollasta, että sitä ei voida selittää pelkästään otantavirheellä? Tämän selvittämiseksi tarvitaan tietoa otoskeskiarvojen erotusten jakaumasta.

Otoskeskiarvojen jakauma tiedetään. Otoskeskiarvojen jakauman keskihajonta, jota kutsutaan keskivirheeksi, arvioidaan jakamalla otoskeskihajonta otoskoon neliöjuurella. Varianssi saadaan korottamalla keskihajonta toiseen potenssiin.

Eri suurten varianssien testi

Kahden otoskeskiarvon erotusten jakauma voidaan johtaa otoskeskiarvojen jakaumista. Jakauman varianssi on otoskeskiarvojen varianssien summa. Näin saadaan otoskeskiarvojen erotuksen keskihajonnaksi elí keskivirheeksi

varianssiensumma

Neliöjuuren alla lasketaan otoskeskiarvojen jakaumien varianssit yhteen, jolloin saadaan otoskeskiarvojen erotusten jakauman varianssi. Ottamalla tästä edelleen neliöjuuri saadaan otoskeskiarvojen erotusten jakauman keskihajonta eli keskivirhe.

Voidaan osoittaa, että standardoitu keskiarvojen erotus (keskiarvojen erotus jaettuna keskivirheellä) noudattaa t-jakaumaa. Lisätietoa Studentin t-jakaumasta englanninkielisessä Wikipediassa Student’s t-distribution. T-jakauman tarkka muoto riippuu vapausasteluvusta. Tässä tapauksessa vapausasteluvun laskeminen on mutkikasta ja tuloksena ei yleensä ole edes kokonaisluku. Vapausasteluku voidaan arvioida niin kutsutulla Welch-Satterthwaiten kaavalla. Laskentakaavan löydät englanninkielisen Wikipedian artikkelista Welch’s t-test.

Yhtä suurten varianssien testi

Jos verrattavien ryhmien varianssit (ja samalla keskihajonnat) voidaan olettaa yhtäsuuriksi, niin voidaan käyttää niin kutsuttua puulattua t-testiä (yhtä suurten varianssien t-testi). Puulatussa t-testissä lasketaan puulattu keskihajonta. Puulattu keskihajonta edustaa kummankin ryhmän otoskeskiarvojen jakauman keskihajontaa. Puulattu keskihajonta lasketaan kaavalla

puulattuvarianssi

Neliöjuuren alla lasketaan puulattu varianssi vapausasteilla painotettuna keskiarvona otosvariansseista. Ottamalla tästä neliöjuuri saadaan puulattu keskihajonta.

Keskiarvojen erotusten jakauman keskihajonta eli keskivirhe saadaan edellä esitetyllä kaavalla

varianssiensumma

sijoittamalla keskihajontojen s1 ja s2 paikalle puulattu keskihajonta.

Voidaan osoittaa, että standardoitu keskiarvojen erotus (keskiarvojen erotus jaettuna keskivrheellä) noudattaa t-jakaumaa vapausastein n1+n2-2.

P-arvon ja virhemarginaalin laskeminen

Testaaminen lähtee siitä perusolettamuksesta, että nollahypoteesi pitää paikkansa. Jos nollahypoteesi pitää paikkansa, niin siitä seuraa, että standardoitu keskiarvojen erotus noudattaa t-jaukaumaa tietyllä vapausasteluvulla. Nyt voidaan laskea t-jakaumasta todennäköisyys sille että otoksista saatu keskiarvojen erotus on havaitun verran tai vielä enemmän nollasta poikkeava. Jos tämä todennäköisyys on pieni, niin tämä on ristiriidassa perusolettamuksen (nollahypoteesin) kanssa. Kyseistä todennäköisyyttä kutsutaan p-arvoksi. Mitä pienempi p-arvo sitä enemmän vaihtoehtoinen hypoteesi saa tukea.

Keskiarvojen erotuksen virhemarginaali voidaan laskea kertomalla keskivirhe t-jakauman kriittisellä arvolla. Kriittinen arvo t on sellainen, että t-jakaumassa ollaan 95 % todennäköisyydellä rajojen -t ja t välissä ja 5 % todennäköisyydellä rajojen -t ja t ulkopuolella.

tkriittinenarvo

Excelissä 95 % luottamustasoon liittyvä t-jakauman kriittinen arvo saadaan funktiolla =TINV(5%;vapausasteluku) (suom. TJAKAUMA.KÄÄNT). Keskiarvojen erotuksen luottamusvälin alaraja saadaan vähentämällä otoskeskiarvojen erotuksesta virhemarginaali. Vastaavasti luottamusvälin yläraja saadaan lisäämällä virhemarginaali otoskeskiarvojen erotukseen.

P-arvon ja luottamusvälin välillä on suora yhteys. Jos p-arvo on pienempi kuin 5 %, niin 95 % luottamusväli ei sisällä arvoa 0. Jos p-arvo on suurempi kuin 5 %, niin 95 % luottamusväli sisältää arvon 0.

Olen laatinut Exceliin laskentapohjan otantavirhe.xlsx, jonka avulla voit helposti laskea t-testin molemmilla tavoilla (erisuuret varianssit, yhtäsuuret varianssit). Lähtötietoina laskentapohjaan annetaan molempien otosten otoskoot, keskiarvot ja keskihajonnat. Laskentapohjassa on laskentakaavat puulatulle varianssille, keskivirheille, vapausasteluvuille, t-jakauman kriittisille arvoille, virhemarginaaleille, luottamusvälien alarajoille, luottamusvälien ylärajoille, testimuuttujille ja p-arvoille.

Eri ohjelmilla voit saada erisuurten varianssien testin osalta hieman poikkeavia tuloksia vapausasteluvusta johtuen. Laskentapohjassani olen pyöristänyt vapausasteluvun alaspäin lähimpään kokonaislukuun, koska laskennassa tarvittava t-jakaumaan liittyvä Excelin funktio ei osaa huomioida desimaaleja. Tämän seurauksena virhemarginaali ja p-arvo arvioidaan joissain tapauksissa hieman yläkanttiin. Erolla ei yleensä ole käytännön merkitystä. Esimerkiksi SPSS ja Excelin T.TEST-funktio laskevat käyttäen vapausasteluvun mahdollisia desimaaleja. Excelin analyysityökalujen t-testi pyöristää vapausasteluvun ainakin joissain tapauksissa ylöspäin lähimpään kokonaislukuun.

Kumpaa testiä pitäisi käyttää?

  • Jos olet epävarma, niin käytä erisuurten varianssien testiä.
  • Jos olet varma, että ryhmien varianssit ovat likimain yhtäsuuret, niin käytä yhtäsuurten varianssien testiä.
  • Jos käytössäsi on SPSS, niin voit tehdä päätöksen Levene-testin perusteella. Lue lisää artikkelistani SPSS: Kahden riippumattoman otoksen vertailu.

Jos otokset ovat isoja ja otoskoot ovat likimain samat, niin testit antavat likimain saman tuloksen. Testien tulokset voivat poiketa paljonkin toisistaan jos otokset ovat pieniä ja/tai otoskoot poikkeavat selvästi toisistaan ja/tai otosvarianssit poikkeavat selvästi toisistaan.

Yhtäsuurten varianssien testiä (puulattu testi) käytetään paljon muiden muassa seuraavista syistä:

  • Kokeellisessa tutkimuksessa on usein hyvät perusteet olettaa ryhmien varianssit yhtäsuuriksi. Jos esimerkiksi arvotaan samasta perusjoukosta kaksi ryhmää, joista toinen saa käsittelyn ja toinen ei, niin on hyvät perusteet olettaa varianssit yhtäsuurksi molemmissa ryhmissä, koska ryhmät on alun perin arvottu samasta perusjoukosta.
  • Oppikirjoissa puulattu testi esitetään usein ykkösvaihtoehtona tai jopa ainoana vaihtoehtona. Tähän lienee historiallisia syitä. Erisuurten varianssien testin käyttö oli hankalaa ennen analysointiin tarkoitettujen tietokoneohjelmien yleistymistä. Ilman tietokonetta vapausasteiden arviointi Welch-Satterthwaiten kaavalla on vaivalloista.

Keskiarvon virhemarginaali – lisätietoa

Päivitetty 25.4.2019.

Perusjoukon keskihajonta tiedossa

Otoksesta laskettu keskiarvo vaihtelee sattumanvaraisesti otoksesta toiseen. Voidaan kuitenkin osoittaa, että eri otoksista saatavat otoskeskiarvot noudattavat likimain normaalijakaumaa. Pienillä otoksilla ehtona otoskeskiarvon normaalijakautuneisuudelle on, että muuttujan arvot ovat perusjoukossa likimain normaalijakautuneet. Isoilla otoksilla otoskeskiarvot ovat likimain normaalijakautuneet riippumatta muuttujan arvojen jakaumasta perusjoukossa (tämä sisältyy niin kutsuttuun keskeiseen raja-arvolauseeseen; voit lukea lisää englanninkielisestä Wikipediasta Central limit theorem). Käytännössä otoskeskiarvojen normaalijakautuneisuus voidaan olettaa jo otoskoosta 30 alkaen ellei muuttujan arvojen jakauma perusjoukossa ole erityisen kummallinen.

Otoskeskiarvojen normaalijakauman keskiarvo on perusjoukon todellinen keskiarvo ja keskihajonta on perusjoukon keskihajonta jaettuna otoskoon neliöjuurella. Otoskeskiarvojen keskihajontaa (perusjoukon keskihajonta jaettuna otoskoon neliöjuurella) kutsutaan keskivirheeksi (standard error).

Otoskeskiarvojen keskivirhe tarkoittaa otoskeskiarvojen keskihajontaa

Normaalijakauman ominaisuuksista seuraa, että otoskeskiarvo on 95 % varmuudella korkeintaan 1,96 keskivirheen päässä jakauman keskiarvosta eli perusjoukon todellisesta keskiarvosta.

normaali

Kääntäen, 95 % varmuudella perusjoukon todellinen keskiarvo on korkeintaan 1,96 keskivirheen päässä otoskeskiarvosta. Tällä perusteella keskiarvon virhemarginaali on 1,96 keskivirhettä.

Normaalijakaumaan liittyvä arvo 1,96 on likiarvo. Tarkemman arvon voit laskea Excelin funktiolla

=NORM.S.INV(97,5%) (suom. NORM_JAKAUMA.KÄÄNT)

Funktion argumenttina voi käyttää myös 2,5%, mutta tällöin vastaus tulee negatiivisella etumerkillä varustettuna.

Perusjoukon keskihajonta tuntematon

Edellä olevassa oletettiin perusjoukon keskihajonta tunnetuksi (keskivirhe laskettiin sen avulla). Yleensä perusjoukon keskihajonta ei ole tiedossa vaan sen sijasta käytetään otoksesta laskettua keskihajontaa. Tämä lisää epävarmuutta ja siten kasvattaa myös keskiarvon virhemarginaalia.

Keskivirhe arvioidaan jakamalla otoksesta laskettu keskihajonta otoskoon neliöjuurella. Keskivirheeseen liittyvä epävarmuus huomioidaan käyttämällä normaalijakauman sijasta otoskoosta riippuvaa Studentin t-jakaumaa. Lisätietoa Studentin t-jakaumasta englanninkielisessä Wikipediassa Student’s t-distribution. Edellä esiintynyt 1,96 oli normaalijakaumaan liittyvä arvo. Vastaava t-jakauman arvo saadaan Excelin funktiolla

=T.INV(97,5%;n-1) (suom. T.KÄÄNT)

Toisena argumenttina on niin kutsuttu vapausasteluku n-1 (n=otoskoko).

Esimerkiksi otoskoolla 101 saadaan Excelin funktiolla =T.INV(97,5%;100) tulokseksi noin 1,98. Näin ollen otoskoolla 101 virhemarginaali on noin 1,98 keskivirhettä.

Usein virhemarginaalin sijasta ilmoitetaan luottamusväli. Luottamusvälin alaraja saadaan vähentämällä otoskeskiarvosta virhemarginaali. Luottamusvälin yläraja saadaan lisäämällä otoskeskiarvoon virhemarginaali.

Vapausasteluku

Vapausasteluku tarkoittaa vapaiden havaintojen lukumäärää. Edellä vapaiden havaintojen lukumäärä on yhtä pienempi kuin otoskoko (n-1). Tämä selittyy sillä, että keskivirheen arviointiin tarvitaan keskiarvoa, jonka laskemisessa menetetään yksi vapausaste. Keskiarvon laskemisen jälkeenhän vain n-1 havaintoa voivat vaihdella vapaasti ja viimeinen n:s havainto määräytyy keskiarvon perusteella.

Vapausasteluku liittyy läheisesti keskihajonnan laskentakaavassa jakajana käytettävään arvoon n-1.Otoksen havainnot ovat keskimäärin lähempänä otoskeskiarvoa kuin todellista perusjoukon keskiarvoa, koska otoskeskiarvo on laskettu otoksen havainnoista. Keskihajonnan ja keskivirheen laskennassa lasketaan havaintojen poikkeamia otoskeskiarvosta. Koska nämä poikkeamat ovat keskimäärin pienempiä kuin poikkeamat todellisesta perusjoukon keskiarvosta, niin keskihajonta ja keskivirhe tulee arvioiduksi liian pieneksi. Käyttämällä keskihajonnan kaavassa jakajana vapausastelukua n-1 otoskoon n sijasta saadaan parempi arvio perusjoukon keskihajonnalle.

Hypoteesin testaus

Otoksen avulla voidaan suorittaa hypoteesin testaus. Yhtä keskiarvoa koskevassa kaksisuuntaisessa testauksessa hypoteesit ovat:

Nollahypoteesi: Keskiarvo = A (A on jokin luku)
Vaihtoehtoinen hypoteesi: Keskiarvo on eri suuri kuin A.

Testaus perustuu otoskeskiarvojen todennäköisyysjakaumaan. Edellä todettiin, että otoskeskiarvojen jakauman keskihajonta eli keskivirhe voidaan arvioida jakamalla otoskeskihajonta otoskoon neliöjuurella. Jakamalla edelleen otoskeskiarvon ja nollahypoteesin mukaisen keskiarvon erotus keskivirheellä saadaan niin kutsuttu testimuuttuja. Voidaan osoittaa, että testimuuttuja noudattaa t-jakaumaa vapausastein n-1 (n=otoskoko).

Hypoteesin testauksessa lähdetään liikkeelle olettaen nollahypoteesin pitävän paikkansa. Tästä olettamuksesta seuraa, että testimuuttuja noudattaa t-jakaumaa, jonka keskikohta on 0. T-jakaumasta voidaan laskea todennäköisyys saada kyseisestä jakaumasta havaitun suuruinen tai vielä kauempana nollasta oleva testimuuttujan arvo. Tätä todennäköisyyttä kutsutaan p-arvoksi. Jos p-arvo on pieni, niin tämä on ristiriidassa nollahypoteesin kanssa. Mitä pienempi p-arvo sitä enemmän vaihtoehtoinen hypoteesi saa tukea.

Vakiintuneen tavan mukaan alle 0,05 (5 %) suuruista p-arvoa pidetään riittävänä näyttönä nollahypoteesia kumoamiseksi.

Voit laskea testimuuttujan ja p-arvon helposti käyttämällä laatimaani laskentapohjaa tiedostossa virhemarginaali.xlsx.

Luottamusvälin ja p-arvon välinen yhteys

Jos p-arvo on yli 0,05 (5 %), niin nollahypoteesin mukainen keskiarvo sisältyy 95 % luottamusväliin. Jos p-arvo on alle 0,05 (5 %), niin nollahypoteesin mukainen keskiarvo ei sisälly 95 % luottamusväliin.

PERCENTILE (PROSENTTIPISTE) – lisätietoa

Päivitetty 25.4.2019.

Neljännesten ja muiden prosenttipisteiden tarkasta määrittämismenetelmästä ei ole yksimielisyyttä. Hyndman ja Fan esittelivät vuoden 1996 artikkelissaan 12 erilaista menetelmää laskea neljänneksiä ja muita prosenttipisteitä (Hyndman, R. J. and Fan, Y. (1996), “Sample quantiles in statistical packages,” The American Statistician, 50(4), 361 – 365). Vaihtoehtoisia menetelmiä on jopa enemmän kuin 12. Lue lisää http://www.amstat.org/publications/jse/v14n3/langford.html. Käytännön tilanteissa menetelmien erot ovat harvoin merkityksellisiä.

Excel 2007 ja sitä aiemmissa versioissa prosenttipisteet lasketaan PERCENTILE (PROSENTTIPISTE) -funktiolla. Laskentamenetelmänä on Hyndmanin ja Fanin esittämä menetelmä #7.

Excel 2010 ja uudemmissa versioissa PERCENTILE-funktion uusi nimi on PERCENTILE.INC (PROSENTTIPISTE.SIS). Myös vanha funktion nimi PERCENTILE (PROSENTTIPISTE) toimii edelleen. Uutena funktiona PERCENTILE.EXC (PROSENTTIPISTE.ULK) laskee prosenttipisteet Hyndman ja Fanin esittämän menetelmän #6 mukaisesti. Myös tilasto-ohjelma SPSS ja monet muut ohjelmat käyttävät tätä menetelmää.

Jos et tarvitse yhteensopivuutta aiempien Excel-versioiden kanssa, niin suosittelen funktion PERCENTILE.EXC (PROSENTTIPISTE.ULK) käyttöä.

Tietoa prosenttipisteiden ja muiden tilastollisten tunnuslukujen laskemisesta artikkelissa 8 Tunnuslukuja.

Lineaarinen yhden selittäjän regressiomalli

Päivitetty 28.9.2020

Kahden määrällisen muuttujan riippuvuutta voin tarkastella hajontakaavion avulla. Lisäksi voin laskea lineaarisen (suoraviivaisen) riippuvuuden voimakkuutta mittaavan korrelaatiokertoimen. Lisätietoja artikkelissani Korrelaatio ja sen merkitsevyys.

Jos haluan selvittää tarkemmin riippuvuuden luonnetta tai hyödyntää riippuvuutta ennustamistarkoituksiin, niin voin mallintaa riippuvuutta lineaarisen mallin avulla.

Suoran yhtälö

Riippuvuudesta voin rakentaa matemaattisen mallin. Kahden muuttujan riippuvuutta kuvaava matemaattinen malli on lauseke, jonka avulla voin laskea toisen muuttujan arvoja ensimmäisen muuttujan arvojen perusteella. Jos muuttujien välinen riippuvuus on suoraviivainen eli lineaarinen, niin käytän mallina suoraa. Lineaarisesta mallista käytetään yleisesti nimeä lineaarinen regressiomalli ja mallina käytettävää suoraa kutsutaan regressiosuoraksi.

Suoraa voin kuvata lausekkeella y = bx + c. Lauseke kertoo miten saan laskettua y:n, kun tunnen x:n.

  • Termiä c kutsutaan vakiotermiksi. Vakiotermi kertoo, missä kohdassa suora leikkaa y-akselia (tämän näen asettamalla x:lle arvon 0, jolloin lausekkeesta jää jäljelle y=c).
  • Termiä b kutsutaan kulmakertoimeksi. Kulmakerroin ilmoittaa minkä verran y muuttuu, kun x kasvaa yhdellä yksiköllä. Laskevaan suoraan liittyy negatiivinen kulmakerroin ja nousevaan suoraan positiivinen kulmakerroin.

Esimerkki. Oletetaan, että konsultti perii palkkiota paikalle saapumisesta 100 euroa ja jokaiselta tehdyltä työtunnilta 80 euroa. Tällöin voin mallintaa konsultin kokonaispalkkiota lausekkeella y=80x+100, missä x on työtuntien määrä. Kyseisessä suoran yhtälössä

  • vakioterminä on 100 ja se ilmoittaa y:n arvon, kun x=0 (eli esimerkissämme palkkio ilman varsinaisia työtunteja)
  • kulmakerroin 80 ilmoittaa palkkion muutoksen, kun työtunnit lisääntyvät yhdellä.

Mallin lisääminen Excelin hajontakaavioon

Voin lisätä Excelin hajontakaavioon riippuvuutta kuvaavan mallin kuvaajan, lausekkeen ja selityskertoimen:

  1. Valitsen Design-välilehdeltä Add Chart Element – Trendline – More Trendline Options (Lisää kaavion osa – Suuntaviiva – Lisää suuntaviivavaihtoehtoja).
  2. Valitsen malliksi Linear (Lineaarinen).
  3. Valitsen tulostettavaksi mallin kaavan Display Equation on Chart (Näytä kaava kaaviossa).
  4. Valitsen tulostettavaksi mallin selityskertoimen kohdasta Display R-squared Value on Chart (Näytä korrelaatiokertoimen arvo kaaviossa). Huomaa, että Excelin suomenkielisissä versioissa puhutaan virheellisesti korrelaatiokertoimesta vaikka kyseessä on korrelaatiokertoimen neliö eli selityskerroin.

Yllä olevaan kuvioon olen lisännyt mainoskulujen ja myynnin välisen mallin. Löydät esimerkin Excel-tiedostosta regressio1.xlsx. Voin tulkita mallia seuraavasti:

  • Kulmakertoimesta 52,568 voin päätellä, että tuhat euroa mainoskuluissa merkitsee keskimäärin 52568 euroa myynnissä.
  • Vakiotermi 46,486 taas ilmoittaa myynnin olevan 46486 euroa, jos mainoskuluja ei ole lainkaan. Tässä tapauksessa vakiotermin antama tieto ei ole käyttökelpoinen eikä luotettava, koska mainoskulujen arvo 0 sijaitsee selvästi havaintoalueen ulkopuolella. Yleensäkään mallin käyttöaluetta ei voi laajentaa kovin paljon havaintoalueen ulkopuolelle.

Mallin avulla voin laskea esimerkiksi seuraavat ennusteet:

  • Jos mainontaan aiotaan käyttää 900 euroa, niin mallin mukainen myyntiennuste on 52,568*0,9+46,486≈93,8 eli 93 800 euroa.
  • Jos tavoitteena on 90 000 euron myynti, niin mallin mukaan mainontaan pitäisi käyttää (90-46,486)/52,568≈0,83 eli 830 euroa.

Käytännössä ennusteet kannattaa laskea Excelin FORECAST (ENNUSTE) -funktiolla, jolloin vältät kulmakertoimeen ja vakiotermiin liittyvät pyöristysvirheet. Katso tarkemmat tiedot Excel-tiedostosta regressio1.xlsx.

Selityskerroin

Äskeisessä esimerkissä selityskerroin on 0,7664 eli 76,64%. Tämä tulkitsen seuraavasti: 76,64% myynnin vaihtelusta voidaan selittää mainoskulujen vaihtelulla. Mallin tarkoituksena on selittää y:n arvojen vaihtelua x:n arvojen vaihtelulla. Selityskertoimella mitataan kuinka hyvin tässä onnistutaan.

Tarkastelen seuraavaksi, mihin selityskertoimen laskenta perustuu. Kunkin havainnon y-arvon kokonaispoikkeama y-arvojen keskiarvosta koostuu kahdesta osasta: mallin selittämästä poikkeamasta ja poikkeamasta, jota malli ei selitä. Seuraavassa kuviossa havaintopisteen kokonaispoikkeama on jaettu mallin selittämään poikkeamaan ja selittämättä jäävään poikkeamaan.

Jos merkitsen mallin selittämien poikkeamien neliöiden summaa SSR (sum of squares due to regression) ja selittämättömien poikkeamien neliöiden summaa SSE (sum of squares due to error), niin kokonaispoikkeamien neliöiden summa SST (total sum of squares) jakaantuu kahteen komponenttiin

SST = SSR + SSE

Selityskerroin on mallin selittämän vaihtelun osuus kokonaisvaihtelusta eli SSR/SST

Lineaarisessa mallissa voin laskea selityskertoimen  myös korrelaatiokertoimen neliönä. Regressiosuoran laskentamenetelmä liittyy sekin neliösummiin. Suora lasketaan pienimmän neliösumman menetelmää käyttäen. Kaikkien mahdollisten pistejoukon läpi kulkevien suorien joukosta valitaan se, jonka kohdalla neliösumma SSE (vaihtelu, jota malli ei selitä) saa pienimmän mahdollisen arvon.

Excelin funktioita

=FORECAST(x;tunnetut y;tunnetut x) -funktiolla (ENNUSTE) voin kätevästi laskea lineaariseen malliin liittyviä ennusteita. Funktio laskee x-arvoon liittyvän y-arvon regressiosuoran yhtälöä käyttäen (taustalla Excel laskee tunnettujen y:n arvojen ja tunnettujen x-arvojen perusteella regressiosuoran yhtälön).

=INTERCEPT(tunnetut y;tunnetut x) -funktiolla (LEIKKAUSPISTE) voin laskea regressiosuoran vakiotermin.

=SLOPE(tunnetut y;tunnetut x) -funktiolla (KULMAKERROIN) voin laskea regressiosuoran kulmakertoimen.

Mallin käyttäminen ennustamiseen

Mallin sopivuus

Mallin avulla voidaan ennustaa y, kun x tunnetaan tai x, kun y tunnetaan. Mallin soveltuvuus ennustamiseen riippuu selittämättömän vaihtelun osuudesta. Hajontakaaviosta voin arvioida selittämättömän, epäsäännöllisen vaihtelun suuruutta ja yli päätään mallin sopivuutta havaintoaineistoon. Mitä enemmän havainnot ”pomppivat” mallin molemmin puolin sitä enemmän ennusteeseen sisältyy epävarmuutta.

Poikkeavat havainnot

Mallit ovat herkkiä poikkeaville arvoille. Jos kuviosta erottuu selvästi muista poikkeavia havaintoja, niin niihin ei pidä suhtautua huolettomasti. Lue lisää artikkelistani Poikkeavat arvot.

Mallin käyttöalue

Havaintoja on käytettävissä vain tietyiltä muuttujan arvoilta ja mallin pätevyyttä voidaan arvioida vain havaintoalueella. Havaintoalueen ulkopuolella olevien muuttujan arvojen kohdalla en voi tietää, onko malli pätevä. Tämän vuoksi mallia ei ole perusteltua käyttää havaintoalueen ulkopuolella.

Seuraavaksi

Jos olet kiinnostunut malleista, joissa on useampia selittäviä muuttujia, niin kannattaa tutustua monisteeseeni Lineaariset regressiomallit.

Poikkeavat arvot

Päivitetty 13.1.2016.

Poikkeavat arvot ovat muista arvoista selvästi poikkeavia arvoja. Tunnistan poikkeavat arvot histogrammin (katso 4 Muuttujan arvojen ryhmittely) tai ruutu- ja janakaavion avulla.

Jos tarkastelen kahden muuttujan välistä riippuvuutta, niin tunnistan poikkeavat arvot  hajontakaaviosta (katso 10 Korrelaatio ja sen merkitsevyys).

Miksi poikkeavat arvot ovat ongelmallisia?

Poikkeavat arvot vaikuttavat voimakkaasti keskiarvoon ja korrelaatiokertoimeen kuten seuraavista esimerkeistä ilmenee.

Esimerkki. Henkilöstön kuukausipalkat euroina ovat 1500, 1500, 1500, 1500, 1500, 2500, 4500, 4500, 5500, 5500 ja 35 000. Kuukausipalkkojen keskiarvo on yli 5900 euroa. Keskiarvo kuvaa huonosti henkilöstön palkkoja. Keskiarvo on tunnetusti herkkä poikkeaville arvoille ja tässä tapauksessa 35 000 euroa on poikkeava arvo, joka nostaa palkkakeskiarvoa. Ilman 35 000 euron palkkaa keskiarvoksi saadaan 3000 euroa.

Esimerkki. Kuukausittaisista tiedoista laadittu mainontaan käytetyn rahamäärän ja myynnin välinen hajontakaavio on seuraavanlainen:

Mainonnan ja myynnin välinen korrelaatiokerroin on 0,909. Kaaviossa on yksi selvästi muista poikkeava piste. Jos se poistetaan, niin hajontakaavio näyttää seuraavalta (vertailun helpottamiseksi akselit on skaalattu samalla tavalla kuin edellisessä kaaviossa):

Korrelaatiokerroin on tässä tapauksessa 0,978. Havaintoihin voidaan sovittaa suoraviivainen malli, jonka avulla voidaan ennustaa myynnin suuruus mainonnan perusteella. Kaavioihin on piirretty parhaiten havaintoihin sopivat suoraviivaiset mallit. Alemman kaavion tapauksessa suoraviivainen malli sovittuu havaintojoukkoon huomattavasti paremmin.

Mitä poikkeaville arvoille pitäisi tehdä?

Poikkeavan arvon kohdalla yritän selvittää, onko kyseessä virheellinen arvo, esimerkiksi väärin kirjattu? Jos kyseessä on virheellinen arvo, niin pyrin oikaisemaan sen. Jos oikaistua arvoa ei ole saatavilla, niin poistan virheellisen arvon aineistosta.

Jos poikkeava arvo ei ole virheellinen, niin pyrin löytämään selityksen poikkeavuudelle. Selityksen löydettyäni teen perustellun päätöksen arvon mukana pitämisestä tai pois jättämisestä.

Esimerkki. Oletetaan, että aiemmassa esimerkissä (mainonnan ja myynnin välinen riippuvuus) poikkeava havainto selittyy sillä, että kyseessä on joulukuu, jolloin myynti on muita kuukausia suurempi. Oletetaan, että tarkoituksena on laatia ennustemalli, jolla myynnin määrää ennustetaan mainontaan käytettävän rahamäärän perusteella normaalitilanteessa. Tällöin on perusteltua pudottaa poikkeuksellinen joulukuun havainto pois tarkasteluista.

Jos poikkeavan havainnon pois jättäminen ei ole perusteltua, niin pidän sen mukana tarkasteluissa. Tällöin suhtaudun varauksella keskiarvoon ja korrelaatiokertoimiin.

SPSS: Yksisuuntainen varianssianalyysi

Päivitetty 25.9.2020

Tarkastelen seuraavassa esimerkkidataa, jossa on testipistemääriä neljän eri koulutusohjelman suorittaneille (8 henkilöä kussakin koulutusohjelmassa). Datan tarkempi kuvaus artikkelissani Yksisuuntainen varianssianalyysi.

Aluksi on syytä huomauttaa, että data täytyy tallentaa alla näkyvän mukaisesti (näkyvillä vain aineiston alkuosa). Ryhmää varten oma sarake ja testattavaa muuttujaa varten oma sarake.

Jos epäilen käyttöedellytyksenä olevan normaalijakautuneisuuden toteutumista, niin voin käyttää Explore-toimintoa normaalijakautuneisuuden testaamiseen. Samalla kannattaa laatia boxplot-kaavio. Lue lisää artikkelistani SPSS: Explore.

Varianssianalyysiin pääsen valitsemalla  Analyze – Compare Means – One-Way ANOVA:

  • Määrittelyikkunassa valitsen ryhmittelevän muuttujan Factor-ruutuun (koulutusohjelma) ja riippuvan muuttujan Dependent List -ruutuun (testipistemäärä).
  • Valitsen Options-painikkeen takaa Descriptive, jotta saan ryhmien keskiarvot ja muita tunnuslukuja.
  • Valitsen Options-painikkeen takaa Homogeneity of variance test, jotta pääsen testaamaan varianssien yhtäsuuruutta.

Descriptives taulukosta löydän muiden muassa ryhmien keskiarvot ja keskihajonnat (Std. Deviation).

Test of Homogeneity of Variances -taulukosta voin tarkistaa, voinko olettaa ryhmien varianssit yhtäsuuriksi (tämähän on varianssianalyysin käyttöedellytys). Testitaulukon Sig. -sarakkeesta näen että p-arvo on 0,984, joka on suurempi kuin 0,05. Näin ollen tässä tapauksessa voin olettaa varianssit yhtä suuriksi (Levene-testin nollahypoteesina on, että varianssit ovat yhtäsuuret).

ANOVA-taulukosta löydän muiden muassa ryhmien välisen (356,042) ja ryhmien sisäisen varianssin (84,348). Sig.-sarakkeesta löydän p-arvon 0,014. Koska p-arvo on pienempi kuin 0,05, niin ryhmien välillä on merkitseviä eroja.

Parivertailut

Jos varianssianalyysin p-arvo on pienempi kuin 0,05, niin tiedän ainakin joidenkin ryhmiän välillä olevan merkitsevä ero. Jos haluan tarkemman tiedon, niin suoritan parivertailuja. Parivertailujen tekemiseen SPSS tarjoaa lukuisia menetelmiä. Löydän menetelmät varianssianalyysin määrittelyikkunan (Analyze – Compare Means – One-Way ANOVA) Post Hoc -painikkeen takaa. Jos et ole perehtynyt eri menetelmien eroihin, niin voit valita Bonferroni-menetelmän. Jos menetelmän valinta askarruttaa, niin netistä löydät loputtomasti artikkeleita ja keskustelua eri menetelmistä. Voit esimerkiksi aloittaa Wikipedian Bonferroni artikkelista.

Tuloksena saan Multiple Comparisons -taulukon. Taulukon Sig.-sarakkeesta näen minkä ryhmien välillä on merkitsevä ero.

Erot ovat merkitseviä koulutusohjelmien 1 ja 2 (p-arvo 0,037) sekä 1 ja 3 välillä (p-arvo 0,021).

Yksisuuntainen varianssianalyysi

Päivitetty 25.4.2019.

Varianssianalyysi on lähinnä kokeellisissa tutkimusasetelmissa käytettävä menetelmä. Varianssianalyysillä voin testata onko ryhmien (kolme tai useampia ryhmiä) keskiarvojen välillä merkitseviä eroja.

Esimerkki. Hiljakkoin työllistetyt 32 vastavalmistunutta jaetaan satunnaisesti neljään erilaiseen myyntikoulutusohjelmaan. Kuukauden koulutuksen jälkeen koulutetuille järjestetään testi, jonka pistemäärät ovat:

Onko koutusohjelmien välillä eroja? Voin tarkastella asiaa alustavasti kaavion avulla. Laadin Excelissä Scatter (Piste) -kaavion, jonka jälkeen valitsin Design (Rakenne) -välilehdeltä Switch Row/Column (Vaihda rivi tai sarake):

Huomautus: Jos ryhmien koot ovat suurempia, niin yllä olevan kaltainen kaavio ei ole havainnollinen, koska pisteet menevät liikaa päällekkäin. Vaihtoehtoisesti voin laatia viivakaavion ryhmien keskiarvoista. Isompien ryhmien kohdalla ruutu- ja janakaavio eli boxplot on havainnollinen.

Kaavion perusteella kolutusohjelmien välillä näyttää olevan eroja. Kaaviossa havaittavat erot voivat kuitenkin johtua satunnaisvaihtelusta. Varianssianalyysin avulla voin selvittää ovatko erot merkitseviä.

Excelin analyysityökalujen avulla voin laskea varianssianalyysin. Jos en ole aiemmin ottanut analyysityökaluja käyttöön, niin voit tehdä sen seuraavasti:

  • Valitsen File – Options (Tiedosto – Asetukset).
  • Valitsen Add Ins (Apuohjelmat) ja valitsen alhaalta Manage (Hallinta) -ruudusta Excel Add Ins (Excel-apuohjelmat).
  • Valitsen Go (Siirry).
  • Valitsen luettelosta Analysis Toolpak (Analyysityökalut) ja valitsen OK.
  • Tämän jälkeen löydän Data (Tiedot) -välilehdeltä analyysityökalut (Data Analysis).

Analyysityökaluista löydän Anova: Single Factor (Anova: yksisuuntainen). Täytän Anova-ikkunaan syöttöalueen (Input Range). Syöttöalueeksi valitsen kaikki testipistemäärät otsikoineen (esimerkkini tapauksessa otsikot ovat 1,2,3,4). Varmistan, että Excel hakee tiedot sarakkeittain (Columns). Lisäksi määritän, että otsikot huomioidaan (Labels in First Row).

Excelin laskemat tulostaulukot näyttävät seuraavilta:

Ylemmästä taulukosta voin lukea eri koulutusohjelmiin liittyvien testipistemäärien keskiarvot ja varianssit (keskihajonnan toinen potenssi). Ensimmäisen koulutusohjelman keskiarvo (79) on selvästi muita korkeampi.

Alemmassa ANOVA-taulukossa vaihtelu on jaettu kahteen osaan: ryhmien väliseen vaihteluun (356,0417) ja ryhmien sisäiseen vaihteluun (84,34821). Mitä suurempi ryhmien välinen vaihtelu on ryhmien sisäiseen vaihteluun verrattuna, sitä merkitsevämpiä eroja ryhmien välillä on. Tämä testataan F-testillä, jonka p-arvon voin lukea taulukosta.

Esimerkin tapauksessa ryhmien välillä on merkiseviä eroja, koska p-arvo 0,014 on pienempi kuin 0,05.

On hyvä tutustua ANOVA-taulukon johtamiseen ja erityisesti vaihtelua mittaavien neliösummien (SS, sum of squares) laskemiseen. Voit tutustua ANOVA-taulukon johtamiseen Excel-tiedoston anovakaavat.xlsx avulla. Olen laskenut tiedostoon Excelin kaavoilla kaikki ANOVA-taulukossa oleva luvut.

Käyttöedellytykset

1. Vertailtavien ryhmien täytyy olla toisistaan riippumattomat.

2. Otoskeskiarvojen täytyy olla peräisin likimain normaalijakaumasta. Jos ryhmät ovat isoja (vähintään 30), niin normaalijakautuneisuus ei yleensä ole ongelma. Jos ryhmät ovat pieniä, voin arvioida normaalijakautuneisuutta otoksen arvojen jakauman perusteella (histogrammi, ruutu- ja janakaavio). Epäselvissä tapauksissa kannattaa testata normaalijakautuneisuus SPSS:llä. Ohjeet ruutu- ja janakaavion tekemiseen ja normaalijakautuneisuuden testaamiseen SPSS:llä löydät artikkelistani SPSS: Explore.

3. Ryhmien varianssien täytyy olla likimain saman suuruisia. Jos käytössä on klassinen koeasetelma, jossa tutkittavat on jaettu satunnaisesti koeryhmään ja vertailuryhmään, niin varianssien pitäisi olla likimain saman suuruisia. Varianssien yhtäsuuruuden tarkistamiseen sopii ruutu- ja janakaavio. Epäselvissä tapauksissa voin testata varianssien yhtäsuuruuden SPSS:n varianssianalyysin laskennan yhteydessä. Lue lisää artikkelistani SPSS: Yksisuuntainen varianssianalyysi.

Jos käyttöedellytykset eivät täyty, niin voin käyttää Kruskal-Wallis -testiä.

Parivertailut

Varianssianalyysi kertoo onko ryhmien keskiarvojen välillä merkitseviä eroja. Sen sijaan varianssianalyysi ei kerro minkä ryhmien välillä on merkitseviä eroja. Arvailuja voin tehdä ryhmien keskiarvojen ja kaavion perusteella. Esimerkkini tapauksessa ei ole vaikeaa arvata, että ainakin koulutusohjelmien 1 (keskiarvo 79)  ja 3 (keskiarvo 64,375) välillä on merkitsevä ero. Olisi kuitenkin hyvä tehdä parivertailuja myös muista pareista. Excel ei tarjoa valmiita työkaluja parivertailujen tekemiseen. Kahden riippumattoman otoksen t-testiä ei voi sellaisenaan käyttää, koska testin toistaminen usealle parille lisää hylkäämisvirheen todennäköisyyttä. SPSS sisältää menetelmiä parivertailujen tekemiseen. Lue lisää artikkelistani SPSS: Yksisuuntainen varianssianalyysi.

SPSS: Explore

Päivitetty 25.9.2020

Keskiarvoja koskevassa testauksessa oletetaan, että otoskeskiarvot ovat normaalijakautuneet. Jos otoskoko on vähintään 30, niin asiaa ei tarvitse erikseen testata. Pienillä otoksilla normaalijakautuneisuus kannattaa testata SPSS:n Exlore-toiminnolla. Itse asiassa tällöin testataan muuttujan normaalijakautuneisuus, joka takaa myös otoskeskiarvojen normaalijakautuneisuuden pienilläkin otoksilla. Explore-toiminto on muutenkin hyödyllinen määrällisen muuttujan tarkastelussa, koska samalla saadaan keskiarvon luottamusväli, histogrammi ja ruutu- ja janakaavio (boxplot).

Seuraavassa käytän esimerkkinä valmiiksi SPSS-muotoista dataa reaktioajat.sav.

  • Valitsen Analyze – Descriptive Statistics – Explore
  • Siirrän ryhmittelevät muuttujat Factor List -ruutuun (esimerkissäni Alkoholi).
  • Siirrän muuttujat, joita haluan tarkastella Dependent List -ruutuun (esimerkissäni Reaktioaika)
  • Napsautan Plots-painiketta
  • Valitsen oletusvalintojen lisäksi Histogram ja Normality plots with tests
  • Pääsen pois Plots-ikkunasta Continue-painikkeella
  • Valitsen OK.

Tuloksena saat muiden muassa Descriptives-taulukon, johon on laskettu keskeisiä tunnuslukuja sekä keskiarvon luottamusväli (95 % Confidence Interval for Mean). Descriptives-taulukon alapuolella on Tests of Normality -taulukko.

Kolmogorov-Smirnov -testi ja Shapiro-Wilk -testi testaavat normaalijakautuneisuutta. Nollahypoteesina on molemmissa ”Muuttuja noudattaa normaalijakaumaa”. Testien p-arvot löytyvät taulukon Sig. -sarakkeista. Molempien ryhmien (Ei-alkoholia ja Alkoholia) kohdalla nollahypoteesi jää voimaan, koska p-arvot ovat suurempia kuin 0,05. Jos Kolmogorov-Smirnov -testi ja Shapiro-Wilk -testi johtavat erilaisiin päätelmiin, niin minä olisin taipuvainen käyttämään testejä, joissa ei tarvitse olettaa normaalijakautuneisuutta.

SPSS tulostaa muuttujan jakaumia esittävät histogrammit sekä useita normaalijakautuneisuuden arviointiin tarkoitettuja kuvioita. Erityisen havainnollinen on ruutu- ja janakaavio (boxplot).

Ruutu- ja janakaavion ruudun alareuna vastaa alaneljännestä ja yläreuna yläneljännestä. Ruudun sisällä oleva vaakaviiva vastaa mediaania. Janojen päissä olevat vaakaviivat kuvaavat pienintä ja suurinta arvoa. Jos muuttujalla on arvoja, jotka sijaitsevat yli 1,5 ruudun korkeuden verran ruudun yläpuolella tai alapuolella, niin ne esitetään omina pisteinään (tällöin janojen päissä olevat vaakaviivat eivät tietenkään kuvaa pienintä ja suurinta arvoa). Yli 1,5 ruudun korkeuden verran ruudun yläpuolella tai alapuolella olevia havaintoja kutsutaan poikkeaviksi (outlier). Poikkeavien havaintojen vieressä on havainnon rivinumero datassa.

SPSS: Kahden riippuvan otoksen vertailu

Päivitetty 26.9.2020

Jos SPSS ei ole käytettävissäsi, niin voit suorittaa kahden riippuvan otoksen t-testin myös Excelillä. Lue lisää artikkelistani Kahden riippuvan otoksen vertailu.

Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Jos haluan tutkia vaikuttaako alkoholi miesten reaktioaikaan, niin voin toimia seuraavasti:

  • valitsen otoksen miehiä
  • mittaan otoksen miehille reaktioajan ilman alkoholin vaikutusta
  • mittaan otoksen miehille reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kullekin miehelle reaktioaikojen eron
  • lasken reaktioaikojen erojen keskiarvon (samaan tulokseen päädyn, jos lasken reaktioaikojen keskiarvojen eron).

Kumpaakin mittausta voin pitää omana otoksenaan, mutta kyseessä ovat toisistaan riippuvat otokset (kyseessähän ovat samat miehet). Riippuvia otoksia voidaan kutsua myös parittaisiksi otoksiksi. Käytettyä tutkimusasetelmaa voidaan kutsua toistomittaukseksi (mittaukset toistetaan samoille henkilöille).

Mitä enemmän erojen keskiarvo poikkeaa nollasta sitä enemmän minulla on perusteita väittää, että alkoholia nauttineilla on eri suuruinen reaktioaika. Pieni poikkeama nollasta voi kuitenkin selittyä otantavirheellä. Otantavirheen osuus on sitä pienempi mitä suurempaa otosta käytän.

Kysymys: Miten voin tietää selittyykö erojen keskiarvon poikkeama nollasta pelkästään otantavirheellä vai onko taustalla myös alkoholin vaikutus reaktioaikaan?

Vastaus: Suoritan kahden riippuvan otoksen t-testin (myös nimitystä parittaisten otosten t-testi käytetään). T-testin tuloksena saan p-arvon. P-arvo on todennäköisyys sille, että erojen keskiarvon poikkeama nollasta selittyy pelkästään otantavirheellä. Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

  • Jos p-arvo on alle 0,050, niin eroa sanotaan tilastollisesti melkein merkitseväksi.
  • Jos p-arvo on alle 0,010, niin eroa sanotaan tilastollisesti merkitseväksi.
  • Jos p-arvo on alle 0,001, niin eroa sanotaan tilastollisesti erittäin merkitseväksi.

Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

Testin suorittamiseksi minun täytyy valita suoritanko kaksisuuntaisen vai yksisuuntaisen testin. Lisäksi minun on syytä pohtia, onko testin suorittaminen ylipäätään luotettavaa eli täyttyvätkö testin käyttöedellytykset.

Kaksisuuntainen vai yksisuuntainen testi?

Jos etukäteen ajateltuna ei ole käsitystä siitä onko erojen keskiarvo positiivinen vai negatiivinen, niin käytän kaksisuuntaista testiä.

Jos etukäteen ajateltuna vain tietyn merkkinen erojen keskiarvo tulee kyseeseen tai olen yksinomaan kiinnostunut tietyn merkkisestä erosta, niin voin käyttää yksisuuntaista testiä. Yksisuuntaisessa testauksessa pienempi poikkeama riittää tilastollisesti merkitsevään testitulokseen.

Testin käyttöedellytykset

Ensiksi tarkasteltavan muuttujan täytyy olla sellainen, että keskiarvon laskeminen on mielekästä. Tällöin myös mittausten erojen keskiarvon laskeminen on mielekästä.

Jos otoskoko on vähintään 30, niin voin käyttää testiä. Tätä pienempien otosten tapauksessa edellytetään, että erot ovat likimain normaalisti jakautuneet. Jos mitattavat muuttujat voidaan olettaa normaalijakautuneiksi, niin sitä suuremmalla syyllä myös mittausten ero voidaan olettaa normaalijakautuneeksi. Jotkin muuttujat ovat luonnostaan sellaisia, että normaalijakautuneisuus voidaan olettaa. Reaktioaika on tällainen muuttuja (useimmat ihmisen fyysisistä ja psyykkisistä ominaisuuksista noudattavat normaalijakaumaa).  Epäselvissä tapauksissa voin testata normaalijakautuneisuutta SPSS:n Explore-toiminnolla. Tästä lisää artikkelissani SPSS: Explore.

Testin laskeminen SPSS:llä

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta data löytyy.
  • OK.

Seuraavassa käytän esimerkkinä dataa reaktioajatriippuvat.sav, joka on valmiiksi SPSS-muotoinen data. Kahden riippuvan otoksen t-testin voin laskea seuraavasti:

  • Valitsen Analyze – Compare Means – Paired-Samples T Test
  • Valitsen vertailtavan parin (ensimmäisen muuttujan valitsen normaalisti ja toisen ctrl-näppäin alhaalla. Siirrän valitun parin Paired Variables -ruutuun. Toistan menettelyn jos haluan vertailla useampia muuttujapareja.
  • OK.

Tulosteina saan taulukon, jossa on molepien ryhmien keskiarvot, otoskoot ja keskihajonnat. Toisessa taulukossa on muuttujien välinen korrelaatiokerroin. Odotettavissa on yleensä iso korrelaatiokerroin, koska muuttujien arvot vastaavat pareittain toisiaan. Esimerkissämme korrelaatiokerroin 0,885 on tilastollisesti merkitsevä (p < 0,001).

Varsinaisesta parittaisen t-testin taulukosta löydän muiden muassa parien erojen keskiarvon (0,1702) ja keskeiset testin tunnusluvut: t eli testimuuttujan arvo, df eli vapausasteiden lukumäärä ja Sig. (2-tailed) eli p-arvo. Testin tuloksen voin raportoida esimerkiksi seuraavasti:

Reaktioaikojen keskiarvo ilman alkoholia 0,226 (keskihajonta = 0,025, n = 15) oli pienempi kuin keskiarvo alkoholin vaikutuksen alaisena 0,243 (keskihajonta = 0,023, n = 15). Ero osoittautui riippuvien otosten t-testillä merkitseväksi: t(14) = 5,630, p < 0,001, 2-suuntainen.

Tieteellisessä tekstissä t-testimuuttujan arvo täytyy ilmoittaa yhdessä vapausasteluvun df kanssa: t(14) = 5,630.

Huomaa, että taulukossa on myös erojen keskiarvon luottamusvälin alaraja ja yläraja. Esimerkkitapauksessa erojen keskiarvon 95 % luottamusväli on 0,01054 – 0,02350.

Mihin kahden riippuvan otoksen t-testin laskenta perustuu?

Vaikka testissä tarkastellaan kahta otosta, niin viime kädessä kyseessä on yhden keskiarvon testaaminen (erojen keskiarvo). Jos haluat tietää enemmän niin lue lisätietoa.

Muita menetelmiä kahden riippuvan otoksen vertailuun

Jos kahden riippumattoman otoksen t-testi ei tule kysymykseen, niin tarjolla on monia muita menetelmiä ryhmien välisen eron testaamiseen. Lue lisää artikkelistani Onko ryhmien välinen ero tilastollisesti merkitsevä?

SPSS: Kahden riippumattoman otoksen vertailu

Päivitetty 26.9.2020

Jos SPSS ei ole käytettävissäsi, niin voit suorittaa kahden riippumattoman otoksen t-testin myös Excelillä. Lue lisää artikkelistani Kahden riippumattoman otoksen vertailu.

Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Jos haluan tutkia vaikuttaako alkoholi miesten reaktioaikaan, niin voin toimia seuraavasti:

  • valitsen kaksi toisistaan riippumatonta otosta miehiä
  • ensimmäisen otoksen miehille mittaan reaktioajan ilman alkoholin vaikutusta
  • toisen otoksen miehille mittaan reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kummallekin otokselle reaktioaikojen keskiarvon.

Mitä enemmän otosten keskiarvot poikkeavat toisistaan sitä enemmän minulla on perusteita väittää, että alkoholi vaikuttaa miesten reaktioaikaan. Pienet erot keskiarvoissa voivat selittyä otantavirheellä. Reaktioajoissa on luontaista vaihtelua miesten välillä ja on sattuman varassa minkälaisen reaktioajan omaavat miehet otoksiin satutaan valitsemaan. Otantavirheen osuus on sitä pienempi mitä suurempaa otosta käytän.

Kysymys: Miten voin tietää selittyykö keskiarvojen ero pelkästään otantavirheellä vai onko taustalla myös alkoholin vaikutus reaktioaikaan?

Vastaus: Suoritan kahden riippumattoman otoksen t-testin. T-testin tuloksena saan p-arvon. P-arvo on todennäköisyys sille, että keskiarvojen ero selittyy pelkästään otantavirheellä. Mitä pienempi p-arvo sitä enemmän saan tukea sille, että keskiarvojen välinen ero on merkitsevä.

  • Jos p-arvo on alle 0,050, niin eroa sanotaan tilastollisesti melkein merkitseväksi.
  • Jos p-arvo on alle 0,010, niin eroa sanotaan tilastollisesti merkitseväksi.
  • Jos p-arvo on alle 0,001, niin eroa sanotaan tilastollisesti erittäin merkitseväksi.

Mitä pienempi p-arvo sitä enemmän saan tukea sille, että keskiarvojen välinen ero on merkitsevä.

Testin suorittamiseksi minun täytyy valita suoritanko yhtäsuurten vai erisuurten varianssien testin sekä suoritanko kaksisuuntaisen vai yksisuuntaisen testin. Lisäksi minun on syytä pohtia, onko testin suorittaminen ylipäätään luotettavaa eli täyttyvätkö testin käyttöedellytykset.

Yhtäsuurten vai erisuurten varianssien testi?

Kahden riippumattoman otoksen t-testistä on kaksi versiota. Yhtäsuurten varianssien testi sopii tilanteisiin, joissa verrattavien ryhmien varianssit (varianssi on keskihajonnan toinen potenssi) ovat likimain yhtäsuuret. Erisuurten varianssien testiä taas voidaan käyttää tilanteisiin, joissa verrattavien ryhmien varianssien yhtäsuuruutta ei voida olettaa.

Kysymys: Mistä tiedän pitääkö käyttää yhtäsuurten vai erisuurten varianssien testiä?

Vastaus: Jos lasket testin SPSS:llä, niin SPSS laskee myös Levene-testin, jonka perusteella voit tehdä valinnan (selitän tarkemmin myöhemmin).

Jos haluat perehtyä tarkemmin yhtäsuurten ja erisuurten varianssien testien eroihin, niin lue lisätietoa.

Kaksisuuntainen vai yksisuuntainen testi?

Jos etukäteen ajateltuna kumman tahansa ryhmän keskiarvo voi olla toista suurempi, niin käytän kaksisuuntaista testiä.

Jos etukäteen ajateltuna vain toisen ryhmän keskiarvo voi olla suurempi tai olen yksinomaan kiinnostunut toisen ryhmän keskiarvon suuremmuudesta, niin voin käyttää yksisuuntaista testiä. Yksisuuntaisessa testauksessa keskiarvojen tilastollisesti merkitsevä ero saavutetaan pienemmällä keskiarvojen erolla.

Testin käyttöedellytykset

Ensiksi tarkasteltavan muuttujan täytyy olla sellainen, että keskiarvon laskeminen on mielekästä.

Jos otoskoot ovat vähintään 30, niin voin käyttää testiä. Tätä pienempien otosten tapauksessa edellytetään, että tarkasteltava muuttuja on perusjoukossaan likimain normaalisti jakautunut. Jotkin muuttujat ovat luonnostaan sellaisia, että normaalijakautuneisuus voidaan olettaa. Reaktioaika on tällainen muuttuja (useimmat ihmisen fyysisistä ja psyykkisistä ominaisuuksista noudattavat normaalijakaumaa). Epäselvissä tapauksissa voin testata normaalijakautuneisuutta SPSS:n Explore-toiminnolla. Tästä lisää artikkelissani SPSS: Explore.

Testin laskeminen SPSS:llä

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta aineisto löytyy.
  • OK.

Seuraavassa käytän esimerkkinä dataa reaktioajat.sav, joka on valmiiksi SPSS-muotoinen data. Kahden riippumattoman otoksen t-testin voin laskea seuraavasti:

  • Valitsen Analyze – Compare Means – Independent-Samples T Test
  • Siirrän muuttujan, jonka keskiarvoista olen kiinnostunut, Test Variable(s) -ruutuun
  • Siirrän ryhmittelevän muuttujan Grouping Variable -ruutuun (esimerkissäni alkoholi)
  • Määrittelen vertailtavat ryhmät Define Groups -painikkeella. Esimerkissäni kirjoitan 0 Group 1 -ruutuun ja 1 Group 2-ruutuun (alkoholi-muuttujan arvot ovat 0 ja 1)
  • Define Groups -ikkunasta pääsen pois Continue-painikkeella
  • Valitsen OK.

SPSS tulostaa luonnollisesti molempien ryhmien otoskoot, keskiarvot ja keskihajonnat.

Varsinaisessa testitaulukossa on ensimmäisenä Levene-testi:

Jos Levene-testin Sig. (p-arvo) on vähintään 0,050, niin voin käyttää yhtäsuurten varianssien testiä. Jos Levene-testin Sig. (p-arvo) on pienempi kuin 0,050, niin käytän eri suurten varianssien testiä. Esimerkissäni käytän yhtäsuurten varianssien testiä (Levene-testin p = 0,114).

Koska päädyin yhtä suurten varianssien testiin, niin luen riviä Equal variances assumed. Sig. (2-tailed) -sarakkeesta löydän kaksisuuntaisen testin p-arvon 0,005. Tuloksen voin raportoida esimerkiksi seuraavasti:

Alkoholia nauttineiden reaktioaikojen keskiarvo 0,237 sekuntia (keskihajonta = 0,035, n=15) poikkesi raittiiden reaktioaikojen keskiarvosta 0,205 sekuntia (keskihajonta = 0,020, n=15). Ero osoittautui riippumattomien otosten t-testillä merkitseväksi: t(28) = -3,046, p = 0,005, 2-suuntainen.

Tieteellisessä tekstissä t-testimuuttujan arvo täytyy ilmoittaa yhdessä vapausasteluvun df kanssa: t(28) = -3,046.

Huomaa, että tulostaulukon oikeasta reunasta löydät keskiarvojen erotuksen luottamusvälin alarajan ja ylärajan. Esimerkin tapauksessa luen luottamusvälin alarajan ja ylärajan taulukon ylemmältä riviltä, koska päädyin käyttämään yhtä suurten varianssien testiä.

spsst3

Keskiarvojen erotuksen 95 % luottamusväli on 0,01015 – 0,01040.

Muita menetelmiä kahden riippumattoman otoksen vertailuun

Kahden riippumattoman otoksen t-testi soveltuu kokeelliseen tutkimusasetelmaan, jossa vertaillaan kahta riippumatonta otosta (kuten tämän artikkelin reaktioaika-esimerkki). Testiä voidaan käyttää myös ei-kokeellisissa tutkimusasetelmissa. Esimerkiksi kyselytutkimusainestossa voidaan verrata eläkeläisten ja työssäkäyvien TV:n katseluun käytettyä aikaa.

Jos kahden riippumattoman otoksen t-testi ei tule kysymykseen, niin tarjolla on monia muita menetelmiä ryhmien välisen eron testaamiseen. Lue lisää artikkelistani Onko ryhmien välinen ero tilastollisesti merkitsevä?

SPSS: khiin neliö -testi

Päivitetty 26.9.2020

Jos SPSS ei ole käytettävissäsi, niin voit suorittaa khiin neliö -testin myös Excelillä. Lue lisää artikkelistani Ristiintaulukointi ja khiin neliö -testi.

Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Tärkeä huomautus: Tässä artikkelissa esitettävä khiin neliö -testi soveltuu käytettäväksi kahden kategorisen muuttujan tapauksessa. Jos toinen muuttujista on mielipideasteikollinen, niin Mann-Whitney U -testi (kahden ryhmän vertailu) tai Kruskal-Wallis -testi (useamman ryhmän vertailu) ovat suositeltavampia testimenetelmiä.

Jos ristiintaulukoin kaksi kategorista muuttujaa, niin tarkastelen joko muuttujien välistä riippuvuutta tai vertailen ryhmiä. On jokseenkin samantekevää puhunko riippuvuudesta vai ryhmien eroista. Kokeellisessa tutkimuksessa kuitenkin puhun mieluummin ryhmien vertailusta ja ei-kokeellisessa tutkimuksessa (esimerkiksi kyselytutkimus) riippuvuudesta. Khiin neliö -testillä testaan onko riippuvuus tai ryhmien välinen ero tilastollisesti merkitsevä.

SPSS ja khiin neliö -testi

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta data löytyy.
  • OK.

Käytän seuraavassa esimerkkidataa PopularKids.sav, joka on valmiiksi SPSS-muotoinen. Datan kuvaus https://asta.math.aau.dk/datasets/?file=PopularKids.html

Ristiintaulukoinnin ja khiin neliö -testin voin suorittaa seuraavasti:

  • Valitsen Analyze – Descriptive Statistics – Crosstabs
  • Siirrän rivi ja sarakemuuttujat paikoilleen
  • Jos haluan prosentteja, niin valitsen ne Cells -painikkeen takaa
  • Valitsen Statistics-painikkeen takaa Chi-square.

Jos lasken ristiintaulukoinnin sukupuolen (Gender) ja tavoitteen (Goals) välille, niin saan seuraavat tulosteet:

Ristiintaulukoinnista näen, että tyttöjen kohdalla on suhteessa enemmän niitä, joiden ensisijaisena tavoitteena on olla suosittu. Pojissa taas on suhteessa enenmmän niitä, joiden ensisijaisena tavoitteena on olla hyvä urheilussa. Jälkimmäisestä taulukosta luen p-arvon Asymp Sig. (2-sided) -sarakkeesta ja Pearson Chi-Square -riviltä. Tässä tapauksessa p-arvo on kolmella desimaalilla 0,000, joten sukupuolen ja tavoitteen välillä on tilastollisesti merkitsevä riippuvuus. Tuloksen voin raportoida esimerkiksi seuraavasti:

Khiin neliö -testin mukaan sukupuolen ja tavoitteen välillä on merkitsevä riippuvuus (χ2 (2) = 21,455; p < 0,001).

Edellä vapausasteluku df=2 on suluissa khiin neliö merkin χ2 perässä.

Tarkastelen vielä toisena esimerkkinä ihonvärin (Race) ja tavoitteen (Goals) välistä riippuvuutta.

Testin tuloksen voin raportoia esimerkiksi seuraavasti: Khiin neliö -testin mukaan ihonvärin ja tavoitteen välillä ei ole merkitsevää riippuvuutta (χ2 (2)  = 1,443; p = 0,486).

Testin käyttöedellytykset

On tärkeää, että tarkastan testin käyttöedellytykset testitaulukon alapuolelta. Käyttöedellytykset liittyvät niin kutsuttuihin odotettuihin lukumääriin (expected counts). Jos haluat tietää, mitä odotetulla lukumäärällä tarkoitetaan, niin lue artikkelini Ristiintaulukointi ja khiin neliö -testi. Kirjallisuudessa annetaan hieman toisistaan poikkeavia rajoja sille, milloin testaaminen muuttuu epäluotettavaksi. Monissa lähteissä esitetään seuraavat kriteerit testaamisen luotettavuudelle:

  • Taulukossa, jossa on kaksi riviä ja kaksi saraketta (2×2 taulukko) ei saa olla yhtään alle viiden (5) suuruista odotettua frekvenssiä.
  • Suuremmissa taulukoissa alle viiden (5) suuruisia odotettuja frekvenssejä saa olla viidesosa (20 %) kaikista odotetuista frekvensseistä. Alle yhden (1) suuruisia odotettuja frekvenssejä ei saa olla lainkaan.

Edellä kuvatuissa esimerkeissä käyttöedellytykset täyttyvät. Sen sijaan seuraavan testitaulukon kohdalla käyttöedellytykset eivät täyty, koska 27,8 % soluista sisältää liian pienen odotetun lukumäärän (alle 5).

Jos testin käyttöedellytykset eivät täyty, niin testaaminen voi silti olla mahdollista:

  • Jos voin luontevasti yhdistellä kategorioita, niin odotetut lukumäärät kasvavat ja testaaminen saattaa olla mahdollista.
  • Jos käytössäni on Exact Tests -lisäosa, niin voin laskea tarkan p-arvon. Tällöin minun ei tarvitse välittää odotettujen lukumäärien suuruuksista. Jos Exact Tests -lisäosa on käytössä, niin ristiintaulukoinnin määrittelyikkunassa on Exact-painike, jonka alta voin määritellä laskettavaksi Exact-testin. Tällöin luen p-arvon testitaulukon Exact Sig. (2-Sided) -sarakkeesta.

Onko ryhmien välinen ero tilastollisesti merkitsevä?

Päivitetty 25.10.2013.

Ryhmien vertailu on usein määrällisen tutkimuksen keskeisin tehtävä. Esimerkiksi kyselytutkimusaineiston perusteella haluan kenties verrata miehiä ja naisia, eri ikäryhmiä, erilaisen koulutuksen saaneita jne. Kokeellisessa tutkimuksessa taas vertailen koeryhmää ja vertailuryhmää tai erilaisen käsittelyn saaneita.

Jos kyseessä on laajemmasta perusjoukosta poimittu otos, niin ryhmien välillä havaitut erot eivät välttämättä tarkoita todellisia eroja perusjoukossa. Kysehän voi olla pelkästään otantavirheen aiheuttamista eroista. Tämän vuoksi tarvitsen tilastollisia testejä, joiden avulla selviää, ovatko erot tilastollisesti merkitseviä. Asianmukaisen testimenetelmän valitsemiseksi minun täytyy alkajaisiksi tietää kaksi asiaa:

  • Onko kyse toisistaan riippumattomista vai riippuvista ryhmistä? Jos et ymmärrä riippumattoman ja riippuvan eroa, niin lue artikkelini Riippumattomat vai riippuvat otokset?.
  • Onko kyse kategorisesta, mielipideasteikollisesta vai määrällisestä muuttujasta?

Riippumattomat otokset – kategorinen muuttuja

Kategorisen muuttujan ristiintaulukoin ryhmittelevän muuttujan kanssa. Testimenetelmänä käytän khiin neliö -testiä.

Riippumattomat otokset – mielipideasteikollinen muuttuja

Mielipideasteikollisen muuttujan ristiintaulukoin ryhmittelevän muuttujan kanssa. Testimenetelmänä käytän khiin neliö -testiä. Jos otoskoko on pieni, niin khiin neliö -testin käyttöedellytykset eivät välttämättä täyty. Tällöin voin yhdistää mielipideasteikon arvoja. Esimerkiksi 5-portaisesta asteikosta ”täysin eri mieltä, jokseenkin eri mieltä, ei eri eikä samaa mieltä, jokseenkin samaa mieltä, täysin samaa mieltä” voin tehdä 3-portaisen asteikon ”eri mieltä, ei eri eikä samaa mieltä, samaa mieltä”.

Monien mielestä parempi vaihtoehto testaamiseen on Mann-Whitney U -testi kahden ryhmän vertailuun tai Kruskal-Wallis -testi useamman ryhmän vertailuun. Nämä soveltuvat myös pienille otoksille. Jos käytän Mann-Whitney U -testiä tai Kruskal-Wallis -testiä, niin lasken silti ristiintaulukoinnin erojen havainnollistamiseksi.

Jos lasken mielipideasteikolle keskiarvoja, niin voin käyttää kahden riippumattoman otoksen t-testiä tai useamman ryhmän vertailuun yksisuuntaista varianssianalyysiä. Monien mielestä keskiarvojen käyttö mielipideasteikoiden kohdalla on kyseenalaista. Lue lisää artikkelistani Mielipideasteikon keskiarvo.

Riippumattomat otokset – määrällinen muuttuja

Määrälliselle muuttujalle lasken keskiarvot. Testimenetelmänä voin käyttää kahden riippumattoman otoksen t-testiä tai useamman ryhmän vertailuun yksisuuntaista varianssianalyysiä.

Erityisesti pienten otosten (n<30) kohdalla t-testin käyttäedellytykset eivät välttämättä täyty. Tällöin voin käyttää Mann-Whitney U -testiä kahden ryhmän vertailuun tai Kruskal-Wallis -testiä useamman ryhmän vertailuun.

Riippuvat otokset – kategorinen muuttuja

Jos tarkasteltavat muuttujat ovat kaksiarvoisia eli dikotomisia, niin testimenetelmäksi sopii McNemar-testi. Voin esimerkiksi testata muuttuuko henkilöiden aikomus ostaa tuottetta promootion seurauksena. Tällöin muuttujina ovat ostohalukkuus ennen promootiota (kyllä/ei) ja samojen henkilöiden ostohalukkuus promootion jälkeen.

Riippuvat otokset – mielipideasteikollinen muuttuja

Voin käyttää Wilcoxon merkittyjen sijalukujen testiä kahden ryhmän vertailuun tai Friedman-testiä useamman ryhmän vertailuun.

Jos lasken mielipideasteikolle keskiarvoja, niin voin käyttää kahden riippuvan otoksen t-testiä tai useamman ryhmän vertailuun toistomittausten varianssianalyysiä. Monien mielestä keskiarvojen käyttö mielipideasteikoiden kohdalla on kyseenalaista. Lue lisää artikkelistani Mielipideasteikon keskiarvo.

Riippuvat otokset – määrällinen muuttuja

Määrälliselle muuttujalle lasken keskiarvot. Testimenetelmänä voin käyttää kahden riippuvan otoksen t-testiä tai useamman ryhmän vertailuun toistomittausten varianssianalyysiä.

Erityisesti pienten otosten (n<30) kohdalla t-testin käyttäedellytykset eivät välttämättä täyty. Tällöin voin käyttää Wilcoxon merkittyjen sijalukujen testiä kahden ryhmän vertailuun tai Friedman-testiä useamman ryhmän vertailuun.

McNemar-testi

Päivitetty 26.9.2020

Kahden riippuvan otoksen McNemar-testi sopii käytettäväksi kaksiarvoisten (dikotomisten) muuttujien kanssa.

Esimerkki. Asiakkailta kysyttiin valitsisivatko he tietyn pesuainemerkin (kyllä/ei). Promootion jälkeen samoilta asiakkailta kysyttiin valitsisivatko he esitellyn pesuainemerkin. McNemar-testillä voidaan testata onko promootio saanut aikaan muutosta mielipiteissä.

Excelissä ei ole valmista toimintoa McNemar-testin laskemiseen. Onneksi versiosta 18 lähtien SPSS on sisältänyt erittäin helppokäyttöisen ja havainnollisen tavan testin laskemiseen. Vaikka suorittaisitkin muut analyysit Excelissä, niin tämän testin osalta kannattaa piipahtaa SPSS:n puolella. Tämä on helppoa vaikka et olisi aiemmin SPSS:ää käyttänytkään. Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Excel-datan avaaminen

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta data löytyy.
  • OK.

Testin suorittaminen

  • Valitse valikosta Analyze – Nonparametric Tests – Related Samples. Avautuvan Nonparametric Tests: Two or More Related Samples -ikkunan yläreunassa on kolme välilehteä: Objective, Fields ja Settings.
  • Valitse Objective-välilehdeltä Automatically compare observed data to hypothesized.
  • Valitse Fields-välilehdeltä vaihtoehto Use custom field assignments, valitse tarkasteltavat kaksi muuttujaa Test Fields: -ruutuun.
  • Napsauta Run-painiketta.

Testin tulkinta

Käytän yllä kuvailemaani esimerkkiä. Havainnot löytyvät SPSS-muotoisesta datasta promootio.sav (tallenna data tietokoneellesi ja avaa sen jälkeen SPSS-ohjelmaan).

Testin tulosteena saan havainnollisen tulosteen. Tulosteesta voin lukea testatun hypoteesin, testin p-arvon ja testin johtopäätöksen. Johtopäätöksen kriteerinä SPSS käyttää oletusarvoisesti merkitsevyystasoa 0,05 (nollahypoteesi hylätään, jos p-arvo on alle 0,05). Merkitsevyystason voit halutessasi vaihtaa Settings-välilehden Test Options -kohdasta.

Testattavana on nollahypoteesi: Mielipiteiden jakaumat ennen ja jälkeen promootion ovat samat. McNemar-testin p-arvo on 0,015 (<0,05), joten nollahypoteesi hylätään. SPSS tarjoaa lisätietoa Model Viewer -ikkunassa, jos kaksoisnapsautan tulostaulukkoa.

Kruskal-Wallis -testi

Päivitetty 26.9.2020

Useamman kuin kahden riippumattoman otoksen välisen eron merkitsevyyttä voin testata yksisuuntaisella varianssianalyysillä. Varianssianalyysin käyttökelpoisuus on kyseenalaista ainakin seuraavissa tapauksissa:

  • Otoskoot ovat pieniä (alle 30) eikä ole varma ovatko tarkasteltavat muuttujat normaalijakautuneet perusjoukossa.
  • Tarkasteltavat muuttujat ovat mielipideasteikollisia. Jos olen sitä mieltä, että keskiarvo ei ole sopiva tunnusluku mielipideasteikolle, niin varianssianalyysi ei tule kyseeseen.

Varianssianalyysin sijasta voin käyttää Kruskal-Wallis -testiä, jonka kohdalla ei tarvitse olettaa normaalijakautuneisuutta. Kruskal-Wallis -testi soveltuu hyvin mielipideasteikoille.

Excelissä ei ole valmista toimintoa Kruskal-Wallis -testin laskemiseen. Onneksi SPSS sisältää helppokäyttöisen ja havainnollisen tavan testin laskemiseen. Vaikka suorittaisitkin muut analyysit Excelissä, niin tämän testin osalta kannattaa piipahtaa SPSS:n puolella. Tämä on helppoa vaikka et olisi aiemmin SPSS:ää käyttänytkään. Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Excel-datan avaaminen

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta data löytyy.
  • OK.

Muuttujien mitta-asteikon tarkistaminen

Siirry Variable View -näkymään napsauttamalla vastaavaa välilehteä SPSS-ikkunan alareunassa. Tarkista tarkasteltavien muuttujien mitta-asteikko Measure-sarakkeesta. Jos mitta-asteikko on Nominal tai Ordinal, niin vaihda asteikoksi Scale. Ryhmittelevän muuttujan mitta-asteikon täytyy olla Nominal tai Ordinal.

Miksi tarkasteltavien muuttujien mitta-asteikon täytyy olla Scale? Testin taustaoletuksena on, että muuttuja on perimmiltään jatkuvaluonteinen. Esimerkiksi 5-portaisen tyytyväisyys-asteikon arvot eivät sellaisenaan ole jatkuvaluonteisia. Tässä kuitenkin riittää se, että oletetaan tyytyväisyys jatkuvaluonteiseksi muuttujaksi, vaikka sitä mitataankin tarkkuudella 1, 2, 3, 4, 5.

Testin suorittaminen

  • Valitse valikosta Analyze – Nonparametric Tests – Independent Samples. Avautuvan Nonparametric Tests: Two or More Independent Samples -ikkunan yläreunassa on kolme välilehteä: Objective, Fields ja Settings.
  • Valitse Objective-välilehdeltä Automatically compare distributions accross groups.
  • Valitse Fields-välilehdeltä vaihtoehto Use custom field assignments, valitse ryhmittelevä muuttuja Groups: -ruutuun ja tarkasteltavat muuttujat Test Fields: -ruutuun.
  • Napsauta Run-painiketta.

Testin tulkinta

Testin tulosteena saat havainnollisen tulostaulukon. Seuraavassa on käytetty SPSS-muotoista maku.sav -aineistoa (tallenna aineisto tietokoneellesi ja avaa se sen jälkeen SPSS-ohjelmaan). Aineistossa on muuttujina marjojen kasvualusta  (punainen, sininen ja musta) ja marjojen maku (5-portaisella asteikolla mitatttuna: 1=selvästi keskimääräistä parempi, 5=selvästi keskimääräistä huonompi).

Taulukosta löytyy testattu nollahypoteesi, testimenetelmän nimi, p-arvo ja testin johtopäätös. Johtopäätöksen kriteerinä SPSS käyttää oletusarvoisesti merkitsevyystasoa 0,05 (nollahypoteesi hylätään, jos p-arvo on alle 0,05). Merkitsevyystason voit halutessasi vaihtaa Settings-välilehden Test Options -kohdasta.

Testattavana on nollahypoteesi: Makuarvioiden jakauma on samanlainen kaikilla kasvualustoilla. Testin mukaan ainakin joidenkin kasvualustojen välillä on eroa makuarvioiden jakaumassa (p-arvo 0,008).

SPSS tarjoaa lisätietoa jos kaksoisnapsautat tulostaulukkoa. SPSS näyttää jakaumien erot havainnollisena ruutu- ja janakaaviona (boxplot).

Kaavion alapuolelle SPSS tulostaa taulukon, joka sisältää testiin liittyviä tunnuslukuja. Voit tarvita joitain näistä luvuista, jos organisaatiosi raportointiohje niin vaatii.

Kokeile myös kaavion alapuolelta valittavissa olevia erilaisia näkymiä (View). Erityisen hyödyllinen on Pairwise Comparisons -näkymä. Kruskal-Wallis -testin tulos kertoo ainoastaan sen, että joidenkin ryhmien välillä on merkitsevä ero. Pairwise Comparisons -näkymästä saat selville minkä ryhmien välillä on merkitseviä eroja.

Pairwise Comparisons

Esimerkkimme tapauksessa punaisen (0) ja mustan (2) kasvualustan välillä on merkitsevä ero.

Riippumattomat vai riippuvat otokset?

Päivitetty 25.10.2013.

Jos testaan, onko ryhmien välinen ero merkitsevä, niin joudun valitsemaan riippumattomien otosten ja riippuvien otosten testien väliltä (lue lisää artikkelistani Onko ryhmien välinen ero tilastollisesti merkitsevä?). On siis keskeistä, että osaan tunnistaa onko kyseessä riippumattomien vai riippuvien otosten asetelma.

Riippumattomat otokset

Jos otan satunnaisotokset kahdesta eri perusjoukosta, niin kyseessä ovat toisistaan riippumattomat otokset.

Esimerkki. Jos haluan verrata kahdella eri menetelmällä valmistettujen lamppujen kestoikää, niin voin ottaa otoksen menetelmällä 1 valmistettuja lamppuja ja toisen otoksen menetelmällä 2 valmistettuja lamppuja.
Tallennan aineiston siten, että molemmilla menetelmillä valmistettujen lamppujen kestoiät ovat samassa sarakkeessa (muuttujassa). Ryhmittelyn toteutan kirjoittamalla valmistusmenetelmää kuvaavat numerot (1 tai 2) omaan sarakkeeseen (muuttujaan).

Myös saman satunnaisotoksen sisällä olevia ryhmiä voin pitää riippumattomina.

Esimerkki. Jos otan yrityksen työntekijöistä satunnaisotoksen, niin voin pitää otokseen sisältyviä naisia ja miehiä toisistaan riippumattomina otoksina (otos naisista ja otos miehistä). Jos esimerkiksi haluan tehdä palkkavertailun, niin miesten ja naisten palkat ovat samassa sarakkeessa (muuttujassa). Ryhmittelyn miehiin ja naisiin toteutan kirjoittamalla sukupuolta kuvaavat numerot omaan sarakkeeseen (muuttujaan).

Riippuvat otokset

Jos toistan mittaukset samoille tutkittaville, niin mittauskerrat muodostavat toistaan riippuvat (parittaiset) otokset.

Esimerkki. Jos mittaan samojen kuluttajien asennetta tuotteeseen ennen ja jälkeen tuote-esittelyn, niin kyseessä ovat toisistaan riippuvat otokset. Asenteen ennen tuote-esittelyä kirjoitan yhteen sarakkeeseen (muuttujaan) ja asenteen tuote-esittelyn jälkeen toiseen sarakkeeseen (muuttujaan).

Toisistaan riippuvat otokset voin muodostaa myös käyttämällä toisiaan vastaavia pareja.

Esimerkki. Verrataan kahden akkutyypin kestoa matkapuhelimissa. Testiin valitaan useita matkapuhelinmalleja, kaksi kutakin. Kustakin matkapuhelinmallista muodostetaan pari, jotta päästän testaamaan kumpaakin akkutyyppiä kyseisessä matkapuhelinmallissa. Akkutyyppeihin liittyvät otokset ovat toisistaan riippuvat. Ensimmäiseen akkutyyppiin liittyvät kestoiät kirjoitan omaan sarakkeeseen (muuttujaan) ja toiseen akkutyyppiin liittyvät kestoiät omaan sarakkeeseen (muuttujaan).

Wilcoxon merkittyjen sijalukujen testi

Päivitetty 26.9.2020

Kahden riippuvan otoksen välisen eron merkitsevyyttä voin testata kahden riippuvan otoksen t-testillä. T-testin käyttökelpoisuus on kuitenkin kyseenalaista seuraavissa tapauksissa:

  • Otoskoko on pieni (alle 30) enkä ole varma ovatko tarkasteltavat muuttujat normaalijakautuneet perusjoukossa.
  • Tarkasteltavat muuttujat ovat mielipideasteikollisia. Jos olen sitä mieltä, että keskiarvo ei ole sopiva tunnusluku mielipideasteikolle, niin kahden riippuvan otoksen t-testi ei tule kyseeseen.

Kahden riippuvan otoksen t-testin sijasta voin käyttää Wilcoxon merkittyjen sijalukujen testiä (Wilcoxon signed rank test), jonka kohdalla ei tarvitse olettaa normaalijakautuneisuutta.

Excelissä ei ole valmista toimintoa Wilcoxon merkittyjen sijalukujen testin laskemiseen, mutta onneksi SPSS on sisältää helppokäyttöisen ja havainnollisen tavan testin laskemiseen. Vaikka suorittaisitkin muut analyysit Excelissä, niin tämän testin osalta kannattaa piipahtaa SPSS:n puolella. Tämä on helppoa vaikka et olisi aiemmin SPSS:ää käyttänytkään. Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Excel-datan avaaminen

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta data löytyy.
  • OK.

Muuttujien mitta-asteikon tarkistaminen

Siirry Variable View -näkymään napsauttamalla vastaavaa välilehteä SPSS-ikkunan alareunassa. Tarkista tarkasteltavien muuttujien mitta-asteikko Measure-sarakkeesta. Jos mitta-asteikko on Nominal tai Ordinal, niin vaihda asteikoksi Scale.  Testin taustaoletuksena on, että muuttuja on perimmiltään jatkuvaluonteinen. Testi sopii siitä huolimatta myös mielipideasteikoille. Esimerkiksi 5-portaisen mielipide-asteikon arvot eivät sellaisenaan ole jatkuvaluonteisia. Tässä kuitenkin riittää se, että oletetaan mielipide jatkuvavaluonteiseksi muuttujaksi, vaikka sitä mitataankin tarkkuudella 1, 2, 3, 4, 5.

Testin suorittaminen

  • Valitse valikosta Analyze – Nonparametric Tests – Related Samples. Avautuvan Nonparametric Tests: Two or More Related Samples -ikkunan yläreunassa on kolme välilehteä: Objective, Fields ja Settings.
  • Valitse Objective-välilehdeltä Automatically compare observed data to hypothesized.
  • Valitse Fields-välilehdeltä vaihtoehto Use custom field assignments, valitse tarkasteltavat kaksi muuttujaa Test Fields: -ruutuun.
  • Napsauta Run-painiketta.

Testin tulkinta

Esimerkki. Tietokoneohjelmien testaaja halusi tutkia onko uusi ohjelma nopeampi kuin vanha. Koska tietokoneohjelmalla suoritetaan erilaisia tehtäviä, niin testaaja arpoi ohjelman tyypillisten tehtävien joukosta 10 tehtävää. Kyseiset tehtävät suoritettiin kummallakin ohjelmalla ja suoritusajat mitattiin. Mittaukset löytyvät datasta  ohjelmat.sav (tallenna data tietokoneellesi ja avaa se sen jälkeen SPSS-ohjelmaan).

Testin tulosteena saan havainnollisen tulosteen. Tulosteesta voin lukea testatun hypoteesin, testin p-arvon ja testin johtopäätöksen. Johtopäätöksen kriteerinä SPSS käyttää oletusarvoisesti merkitsevyystasoa 0,05 (nollahypoteesi hylätään, jos p-arvo on alle 0,05). Merkitsevyystason voit halutessasi vaihtaa Settings-välilehden Test Options -kohdasta.

Testattavana on nollahypoteesi: Uuden ja vanhan ohjelman suoritusaikojen erojen mediaani on 0. Kaksisuuntaisen Wilcoxon merkittyjen sijalukujen testin p-arvo on 0,011 (<0,05), joten nollahypoteesi hylätään. SPSS tarjoaa lisätietoa jos kaksoisnapsautan tulostaulukkoa. SPSS näyttää parien erotukset (Uusi-Vanha) histogrammina. Esimerkin tapauksessa yhdellä parilla on positiivinen erotus (uusi ohjelma hitaampi) ja kahdeksalla parilla on negatiivinen erotus (uusi ohjelma nopeampi). Lisäksi yhdessä parissa suoritusajat ovat samat.

Kuvion alapuolelle SPSS tulostaa taulukon, joka sisältää testiin liittyviä tunnuslukuja. Voit tarvita joitain näistä luvuista, jos organisaatiosi raportointiohje niin vaatii.

Mann-Whitney U -testi

Päivitetty 26.9.2020

Kahden riippumattoman otoksen välisen eron merkitsevyyttä voin testata kahden riippumattoman otoksen t-testillä. T-testin käyttökelpoisuus on kyseenalaista ainakin seuraavissa tapauksissa:

  • Otoskoko on pieni (alle 30) eikä olla varmoja ovatko tarkasteltavat muuttujat normaalijakautuneet perusjoukossa.
  • Tarkasteltavat muuttujat ovat mielipideasteikollisia. Jos olet sitä mieltä, että keskiarvo ei ole sopiva tunnusluku mielipideasteikolle, niin kahden riippumattoman otoksen t-testi ei tule kyseeseen.

Kahden riippumattoman otoksen t-testin sijasta voin käyttää Mann-Whitney U -testiä, jonka kohdalla ei tarvitse olettaa normaalijakautuneisuutta. Mann-Whitney U -testi soveltuu hyvin mielipideasteikoille.

Excelissä ei ole valmista toimintoa Mann-Whitney U -testin laskemiseen. Onneksi SPSS sisältää helppokäyttöisen ja havainnollisen tavan testin laskemiseen. Vaikka suorittaisitkin muut analyysit Excelissä, niin tämän testin osalta kannattaa piipahtaa SPSS:n puolella. Tämä on helppoa vaikka et olisi aiemmin SPSS:ää käyttänytkään. Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss.pdf.

Excel-datan avaaminen

Jos data on tallennettu Excel-muotoon artikkelini Datan tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta data löytyy.
  • OK.

Muuttujien mitta-asteikon tarkistaminen

Siirry Variable View -näkymään napsauttamalla vastaavaa välilehteä SPSS-ikkunan alareunassa. Tarkista tarkasteltavien muuttujien mitta-asteikko Measure-sarakkeesta. Jos mitta-asteikko on Nominal tai Ordinal, niin vaihda asteikoksi Scale. Ryhmittelevän muuttujan mitta-asteikon täytyy olla Nominal tai Ordinal.

Miksi tarkasteltavien muuttujien mitta-asteikon täytyy olla Scale? Testin taustaoletuksena on, että muuttuja on perimmiltään jatkuvaluonteinen. Esimerkiksi 5-portaisen tyytyväisyys-asteikon arvot eivät sellaisenaan ole jatkuvaluonteisia. Tässä kuitenkin riittää se, että oletetaan tyytyväisyys jatkuvaluonteiseksi muuttujaksi, vaikka sitä mitataankin tarkkuudella 1, 2, 3, 4, 5.

Testin suorittaminen

  • Valitse valikosta Analyze – Nonparametric Tests – Independent Samples. Avautuvan Nonparametric Tests: Two or More Independent Samples -ikkunan yläreunassa on kolme välilehteä: Objective, Fields ja Settings.
  • Valitse Objective-välilehdeltä Automatically compare distributions accross groups.
  • Valitse Fields-välilehdeltä vaihtoehto Use custom field assignments, valitse ryhmittelevä muuttuja Groups: -ruutuun ja tarkasteltavat muuttujat Test Fields: -ruutuun.
  • Napsauta Run-painiketta.

Testin tulkinta

Seuraavassa on testattu data1.xlsx -aineistolle miesten ja naisten tyytyväisyyksien eroja (avatessasi aineistoa SPSS:llä valitse Worksheet-asetukseksi Data). Ryhmittelevänä muuttujana (Groups) on ’Sukupuoli’ ja testattavina muuttujina (Testi Fields) ’Tyytyväisyys johtoon’, ’Tyytyväisyys työtovereihin’ jne. Testin tulosteena saat havainnollisen tulostaulukon.Taulukosta löytyy kullekin muuttujalle testattu nollahypoteesi, testimenetelmän nimi, p-arvo ja testin johtopäätös. Johtopäätöksen kriteerinä SPSS käyttää oletusarvoisesti merkitsevyystasoa 0,05 (nollahypoteesi hylätään, jos p-arvo on alle 0,05). Merkitsevyystason voit halutessasi vaihtaa Settings-välilehden Test Options -kohdasta.

Testattavana on nollahypoteesi: Tarkasteltavan muuttujan jakauma on sama molemmissa ryhmissä. Esimerkiksi muuttujan ”Tyytyväisyys johtoon” tapauksessa miesten ja naisten mielipidejakaumien välillä on merkitsevä ero (kaksisuuntaisen Mann-Whitney U -testin p-arvo=0,003). SPSS tarjoaa lisätietoa jos kaksoisnapsautat tulostaulukkoa. SPSS näyttää jakaumien eron havainnollisena kuviona:

Kuvion alapuolelle SPSS tulostaa taulukon, joka sisältää testiin liittyviä tunnuslukuja. Voit tarvita joitain näistä luvuista, jos organisaatiosi raportointiohje niin vaatii.

Mitä Mann-Whitney U -testillä itse asiassa testataan?

Kirjallisuudessa Mann-Whitney U -testissä testattavat hypoteesit esitetään monin eri tavoin. Usein hypoteesit on muotoiltu siten, että testataan mediaanien yhtäsuuruutta. Tällöin edellytetään, että muuttujien jakaumat ovat likimain samanmuotoiset.

Mann-Whitney U -testi perustuu sijalukuihin. Tarkasteltavan muuttujan arvot laitetaan suuruusjärjestykseen ja niille annetaan suuruusjärjestykseen pohjautuvat sijaluvut. Sijalukujen summa on T=n(n+1)/2. Jos jakaumat ovat samankaltaiset, niin ryhmän sijalukujen summan pitäisi olla (n1/n)×T (ryhmän kokoa n1 vastaava osuus sijalukujen summasta T). P-arvo kertoo todennäköisyyden sille, että ryhmän sijalukujen summa poikkeaa otoksessa havaitun verran tai enemmän odotetusta, jos oletetaan nollahypoteesin pitävän paikkansa. Mitä pienempi p-arvo sitä enemmän vaihtoehtoinen hypoteesi saa tukea.

P-arvo

Päivitetty 25.10.2013.

Tilastollisen testauksen logiikka vastaa monin tavoin oikeudenkäynnin logiikkaa. Oikeudenkäynnissä oletetaan, että henkilö on syytön kunnes toisin osoitetaan. Tilastollisessa testauksessa oletetaan nollahypoteesin pitävän paikkansa kunnes toisin osoitetaan. Nollahypoteesi on usein muotoa ’ei eroa’ tai  ’ei riippuvuutta’. Esimerkiksi

  • Miehet ja naiset ovat yhtä tyytyväisiä työympäristöön.
  • Tehtyjen harjoitustehtävien määrän ja tenttimenestyksen välillä ei ole riippuvuutta.
  • Miesten reaktioaika ei muutu alkoholin nauttimisen seurauksena.

Tilastollisessa testauksessa oletetaan nollahypoteesin pitävän paikkansa kunnes toisin osoitetaan.

Todistustaakka on syyttäjällä, tilastollisessa testauksessa tutkijalla. Syyttäjä kerää oikeudenkäyntiä varten todisteita syyllisyyden puolesta. Tilastollisessa testauksessa tutkija kerää otoksen kiinnostuksen kohteena olevasta perusjoukosta.

Tutkija vertaa otoksen tulosta nollahypoteesiin. Pelkästään otantavirheen takia otoksen tulos poikkeaa enemmän tai vähemmän nollahypoteesista. Isoja poikkeamia ei kuitenkaan voida selittää pelkästään otantavirheellä.  Vastaavalla tavalla syyttäjä voi esittää niin vahvoja todisteita syyllisyyden puolesta, että niitä ei voida selittää pelkästään sattumalla. Jos syytetty on tavattu ryöstön jälkeen ryöstöpaikan läheisyydestä kädessään ryöstösaalista ja toisessa kädessä ase, niin harva uskoo tämän kaiken aiheutuneen sattumalta, ilman että syytetty olisi osallinen ryöstöön.

Pelkästään otantavirheen takia otoksen tulos poikkeaa enemmän tai vähemmän nollahypoteesista. Isoja poikkeamia ei kuitenkaan voida selittää pelkästään otantavirheellä.

Tilastollisen testauksen keskeinen kysymys on: kuinka iso poikkeama nollahypoteesista on liian iso selitettäväksi pelkällä otantavirheellä? Asian selventämiseksi tutkija laskee kuinka yllättävänä otoksessa havaittua voidaan pitää, jos oletetaan nollahypoteesin pitävän paikkansa. Tätä kutsutaan p-arvoksi.

Mitä pienempi p-arvo sitä enemmän vaihtoehtoinen hypoteesi saa tukea ja sitä enemmän todisteet puhuvat nollahypoteesia vastaan.

Jos esimerkiksi tutkija saa p-arvoksi 0,001 eli 0,1 %, niin otoksen tulos on yllättävä. P-arvoa 0,001 on tulkittava seuraavasti: Jos nollahypoteesin oletetaan pitävän paikkansa, niin otoksen kaltainen tai vielä enemmän nollahypoteesista poikkeava tulos sattuu kohdalle yhdessä otoksessa tuhannesta. Kyseessä on siis melko yllättävä tulos. Tämä jos mikä on riittävä todiste nollahypoteesia vastaan. Tuloshan ei nimittäin olekaan enää yllättävä, jos nollahypoteesi ei pidäkään paikkansa. Seuraavassa kolme näkökulmaa p-arvon ymmärtämiseksi:

  • P-arvo on todennäköisyys sille, että otoksen tulos poikkeaa havaitun verran tai vieläkin enemmän nollahypoteesista (kun oletetaan, että nollahypoteesi pitää paikkansa).
  • P-arvo on todennäköisyys sille, että havaittu poikkeama nollahypoteesista voidaan selittää pelkästään otantavirheellä.
  • Jos nollahypoteesi päätetään hylätä, niin p-arvo ilmoittaa päätökseen liittyvän erehtymisriskin.

Mitä pienempi p-arvo sitä enemmän vaihtoehtoinen hypoteesi saa tukea ja sitä enemmän todisteet puhuvat nollahypoteesia vastaan. Kuinka pieni p-arvon sitten täytyy olla, jotta nollahypoteesi voidaan hylätä? Yleisimmin käytetty raja on 0,05 eli 5 %. Tämä on kuitenkin täysin mielivaltainen raja ja tapauskohtaista harkintaa on syytä käyttää. Kovin korkealle rajaa ei kuitenkaan voi nostaa. Tämän ymmärtää hyvin vertaamalla tilannetta oikeudenkäyntiin. Tuskin henkilöä päätetään tuomita, jos päätökseen liittyvä erehtymisriski on esimerkiksi 30 %. Oikeudenkäynnissä tilanne on käytännössä hankalampi, koska p-arvon kaltaista todennäköisyyttä ei yleensä ole laskettavissa.

On tärkeää huomata, että tilastollisessa testauksessa ei koskaan osoiteta nollahypoteesia oikeaksi. Todisteet joko riittävät nollahypoteesin hylkäämiseen tai eivät riitä. Vaikka todisteet eivät riitäkään nollahypoteesin hylkäämiseen, niin käytössä ei ole todisteita, jotka osoittaisivat nollahypoteesin oikeaksi. Vähän vastaavalla tavalla voidaan ajatella oikeudenkäynnistäkin. Vaikka todisteet eivät olekaan riittävät syyllisyyden osoittamiseksi, niin eivät ne toisaalta vastaansanomattomasti todista syytetyn syyttömyyttäkään.

On tärkeää huomata, että tilastollisessa testauksessa ei koskaan osoiteta nollahypoteesia oikeaksi.

P-arvoon viittaan artikkeleissani:

Kahden riippuvan otoksen vertailu

Päivitetty 20.4.2019.

Jos haluan tutkia vaikuttaako alkoholi miesten reaktioaikaan, niin voin toimia seuraavasti:

  • valitsen otoksen miehiä
  • mittaan otoksen miehille reaktioajan ilman alkoholin vaikutusta
  • mittaan otoksen miehille reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kullekin miehelle reaktioaikojen eron
  • lasken reaktioaikojen erojen keskiarvon (samaan tulokseen päädyn, jos lasken reaktioaikojen keskiarvojen eron).

Kumpaakin mittausta voin pitää omana otoksenaan, mutta kyseessä ovat toisistaan riippuvat otokset (kyseessähän ovat samat miehet). Riippuvia otoksia voidaan kutsua myös parittaisiksi otoksiksi.

Mitä enemmän erojen keskiarvo poikkeaa nollasta sitä enemmän minulla on perusteita väittää, että alkoholia nauttineilla on eri suuruinen reaktioaika. Pieni poikkeama nollasta voi kuitenkin selittyä otantavirheellä. Otantavirheen osuus on sitä pienempi mitä suurempaa otosta käytän.

Kysymys: Miten voin tietää selittyykö erojen keskiarvon poikkeama nollasta pelkästään otantavirheellä vai onko taustalla myös alkoholin vaikutus reaktioaikaan?

Vastaus: Suoritan kahden riippuvan otoksen t-testin (myös nimitystä parittaisten otosten t-testi käytetään). T-testin tuloksena saan p-arvon. P-arvo on todennäköisyys sille, että erojen keskiarvon poikkeama nollasta selittyy pelkästään otantavirheellä. Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

Vakiintuneen tavan mukaan alle 0,050 (5,0 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa olevan eron puolesta.

Testin suorittamiseksi minun täytyy valita suoritanko kaksisuuntaisen vai yksisuuntaisen testin. Lisäksi minun on syytä pohtia, onko testin suorittaminen ylipäätään luotettavaa eli täyttyvätkö testin käyttöedellytykset.

Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

Kaksisuuntainen vai yksisuuntainen testi

Jos etukäteen ajateltuna ei ole käsitystä siitä onko erojen keskiarvo positiivinen vai negatiivinen, niin käytän kaksisuuntaista testiä.

Jos etukäteen ajateltuna vain tietyn merkkinen erojen keskiarvo tulee kyseeseen tai olen yksinomaan kiinnostunut tietyn merkkisestä erosta, niin voin käyttää yksisuuntaista testiä. Yksisuuntaisessa testauksessa pienempi poikkeama riittää tilastollisesti merkitsevään testitulokseen.

Testin käyttöedellytykset

Ensiksi tarkasteltavan muuttujan täytyy olla sellainen, että keskiarvon laskeminen on mielekästä. Tällöin myös mittausten erojen keskiarvon laskeminen on mielekästä.

Jos otoskoko on vähintään 30, niin voin käyttää testiä. Tätä pienempien otosten tapauksessa edellytetään, että erot ovat likimain normaalisti jakautuneet. Jos mitattavat muuttujat voidaan olettaa normaalijakautuneiksi, niin sitä suuremmalla syyllä myös mittausten ero voidaan olettaa normaalijakautuneeksi. Jotkin muuttujat ovat luonnostaan sellaisia, että normaalijakautuneisuus voidaan olettaa. Reaktioaika on tällainen muuttuja (useimmat ihmisen fyysisistä ja psyykkisistä ominaisuuksista noudattavat normaalijakaumaa).  Epäselvissä tapauksissa voin yrittää arvioida normaalijakautuneisuutta otosten erojen jakauman perusteella (voin käyttää esimerkiksi histogrammia tai ruutu- ja janakaaviota).

Testin p-arvon laskeminen Excelillä

Voin laskea testin p-arvon Excelin funktiolla =T.TEST(otos1;otos2;suuntaisuus;tyyppi)

  • otos1: viittaus ensimmäiseen otokseen
  • otos2: viittaus toiseen otokseen
  • suuntaisuus: 2 kaksisuuntaiselle testille, 1 yksisuuntaiselle testille
  • tyyppi: 1 riippuvien otosten t-testille

Suomenkielisessä Excelissä funktion nimi on T.TESTI.

Funktion nimeä vaihdettiin Excelin versioon 2010. Aikasemmissa versioissa funktion nimi on TTEST (TTESTI). Vanha funktion nimi toimii edelleen uudemmissa Excelin versioissa.

Esimerkki. Tiedostossa reaktioajat.xlsx on kuvitteellinen esimerkkiaineisto reaktioajoista. Ensimmäisen mittauksen reaktioajat ovat soluissa B2:B16 ja toisen otoksen reaktioajat soluissa C2:C16. P-arvon laskemiseen (yksisuuntainen) voidaan käyttää funktiota =T.TEST(B2:B16;C2:C16;2;1)

Esimerkkiaineiston p-arvo on pienempi kuin 0,001, mikä tarkoittaa erojen keskiarvon tilastollisesti merkitsevää poikkeamaa nollasta.

Testin tulosten raportointi

Tuloksen voin raportoida monellakin tavalla. Tärkeintä on, että otosten keskiarvot, keskihajonnat, otoskoko ja testin p-arvo ovat näkyvillä. Esimerkiksi:

Reaktioaikojen keskiarvo ilman alkoholia 0,226 (keskihajonta = 0,025, n = 15) oli pienempi kuin keskiarvo alkoholin vaikutuksen alaisena 0,243 (keskihajonta = 0,023, n = 15). Ero osoittautui riippuvien otosten t-testillä merkitseväksi: t(14) = 5,621, p < 0,001, 2-suuntainen.

Tieteellisessä tekstissä t-testimuuttujan arvo täytyy ilmoittaa yhdessä vapausasteluvun df kanssa: t(14) = 5,621. Testimuuttujan arvon ja vapausasteluvun saat Excelin analyysityökaluilla (katso reaktioajat.xlsx) tai käyttämällä valmista laskentapohjaa tiedostossa otantavirhe.xlsx.

SPSS

Jos haluat suorittaa testauksen SPSS:llä, niin lue artikkelini SPSS: Kahden riippuvan otoksen vertailu.

Muita menetelmiä kahden riippuvan otoksen vertailuun

Jos keskiarvo ei sovellu tarkasteltavalle muuttujalle, niin tarjolla on kaksi hyvää vaihtoehtoa:

  1. Jos tarkasteltava muuttuja on kaksiarvoinen (joko/tai), niin voit käyttää McNemar-testiä. Voit esimerkiksi testata ostohalukkuuden eroa ennen ja jälkeen tuote-esittelyn. Excelissä ei ole valmista toimintoa testin laskemiseen. SPSS soveltuu hyvin testin laskemiseen.
  2. Jos otoskoko on alle 30 etkä ole varma normaalijakautuneisuudesta, niin riippuvien otosten t-testin sijasta voit käyttää Wilcoxon merkittyjen sijalukujen testiä. Excelissä ei ole valmista toimintoa testin laskemiseen. SPSS soveltuu hyvin testin laskemiseen.

Kahden riippumattoman otoksen vertailu

Miesten reaktioaikaa voin tutkia myös toisenlaisella tutkimusasetelmalla:

  • valitsen kaksi toisistaan riippumatonta otosta miehiä
  • ensimmäisen otoksen miehille mittaan reaktioajan ilman alkoholin vaikutusta
  • toisen otoksen miehille mittaan reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kummallekin otokselle reaktioaikojen keskiarvon.

Tässä asetelmassa otokset ovat toisistaan riippumattomat ja vertailuun täytyy käyttää kahden riippumattoman otoksen t-testiä.

Usein kysyttyä

Kysymys: Olen laskenut keskiarvot ja keskihajonnat, mutta alkuperäinen aineisto ei ole Excelissä. Voinko silti laskea kahden otoksen t-testin.

Vastaus: Voit. Käytä Exceliin laatimaani laskentapohjaa otantavirhe.xlsx. Syötä laskentapohjaan otoskoko, erojen keskiarvo ja erojen keskihajonta.

Kysymys: Voinko laskea virhemarginaalin erojen keskiarvolle?

Vastaus: Kyllä. Käytä Exceliin laatimaani laskentapohjaa otantavirhe.xlsx. Syötä laskentapohjaan otoskoko, erojen keskiarvo ja erojen keskihajonta.

Kahden riippumattoman otoksen vertailu

Päivitetty 20.4.2019.

Jos haluan tutkia vaikuttaako alkoholi miesten reaktioaikaan, niin voin toimia seuraavasti:

  • valitsen kaksi toisistaan riippumatonta otosta miehiä
  • ensimmäisen otoksen miehille mittaan reaktioajan ilman alkoholin vaikutusta
  • toisen otoksen miehille mittaan reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kummallekin otokselle reaktioaikojen keskiarvon.

Mitä enemmän otosten keskiarvot poikkeavat toisistaan sitä enemmän minulla on perusteita väittää, että alkoholi vaikuttaa miesten reaktioaikaan. Pienet erot keskiarvoissa voivat selittyä otantavirheellä. Reaktioajoissa on luontaista vaihtelua miesten välillä ja on sattuman varassa minkälaisen reaktioajan omaavat miehet otoksiin valikoituvat. Otantavirheen osuus on sitä pienempi mitä suurempaa otosta käytän.

Kysymys: Miten voin tietää selittyykö keskiarvojen ero pelkästään otantavirheellä vai onko taustalla myös alkoholin vaikutus reaktioaikaan?

Vastaus: Suoritan kahden riippumattoman otoksen t-testin. T-testin tuloksena saan p-arvon. P-arvo on todennäköisyys sille, että keskiarvojen ero selittyy pelkästään otantavirheellä. Mitä pienempi p-arvo sitä enemmän saan tukea sille, että keskiarvojen välinen ero on merkitsevä.

Vakiintuneen tavan mukaan alle 0,050 (5,0 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa olevan eron puolesta.

Testin suorittamiseksi minun täytyy valita suoritanko yhtäsuurten vai erisuurten varianssien testin sekä suoritanko kaksisuuntaisen vai yksisuuntaisen testin. Lisäksi minun on syytä pohtia, onko testin suorittaminen ylipäätään luotettavaa eli täyttyvätkö testin käyttöedellytykset.

Mitä pienempi p-arvo sitä enemmän saan tukea sille, että keskiarvojen välinen ero on merkitsevä.

Yhtäsuurten vai erisuurten varianssien testi?

Kahden riippumattoman otoksen t-testistä on kaksi versiota.

  • Yhtäsuurten varianssien testi sopii tilanteisiin, joissa verrattavien ryhmien varianssit (varianssi on keskihajonnan toinen potenssi) ovat likimain yhtäsuuret.
  • Erisuurten varianssien testiä taas voidaan käyttää tilanteisiin, joissa verrattavien ryhmien varianssien yhtäsuuruutta ei voida olettaa.

Kysymys: Mistä tiedän pitääkö käyttää yhtäsuurten vai erisuurten varianssien testiä?

Vastaus: Jos olet epävarma, niin käytä erisuurten varianssien testiä. Jos tiedät perusjoukoissa varianssien olevan likimain yhtäsuuret ja otosten varianssitkin tukevat tätä käsitystä, niin voit käyttää yhtäsuurten varianssien testiä.

Jos olet epävarma, niin käytä erisuurten varianssien testiä.

Kaksisuuntainen vai yksisuuntainen testi?

Jos etukäteen ajateltuna kumman tahansa ryhmän keskiarvo voi olla toista suurempi, niin käytän kaksisuuntaista testiä.

Jos etukäteen ajateltuna vain toisen ryhmän keskiarvo voi olla suurempi tai olen yksinomaan kiinnostunut toisen ryhmän keskiarvon suuremmuudesta, niin voin käyttää yksisuuntaista testiä. Yksisuuntaisessa testauksessa keskiarvojen tilastollisesti merkitsevä ero saavutetaan pienemmällä keskiarvojen erolla.

Testin käyttöedellytykset

Ensiksi tarkasteltavan muuttujan täytyy olla sellainen, että keskiarvon laskeminen on mielekästä.

Jos otoskoot ovat vähintään 30, niin voin käyttää testiä. Tätä pienempien otosten tapauksessa edellytetään, että tarkasteltava muuttuja on perusjoukossaan likimain normaalisti jakautunut. Jotkin muuttujat ovat luonnostaan sellaisia, että normaalijakautuneisuus voidaan olettaa. Reaktioaika on tällainen muuttuja (useimmat ihmisen fyysisistä ja psyykkisistä ominaisuuksista noudattavat normaalijakaumaa). Epäselvissä tapauksissa voin yrittää arvioida normaalijakautuneisuutta otoksen arvojen jakauman perusteella (voin käyttää esimerkiksi histogrammia tai ruutu- ja janakaaviota).

Testin p-arvon laskeminen Excelillä

Voin laskea testin p-arvon Excelin funktiolla =T.TEST(otos1;otos2;suuntaisuus;tyyppi)

  • otos1: viittaus ensimmäiseen otokseen
  • otos2: viittaus toiseen otokseen
  • suuntaisuus: 2 kaksisuuntaiselle testille, 1 yksisuuntaiselle testille
  • tyyppi: 2 yhtäsuurten varianssien testille, 3 erisuurten varianssien testille

Suomenkielisessä Excelissä funktion nimi on T.TESTI.

Funktion nimeä vaihdettiin Excelin versioon 2010. Aikasemmissa versioissa funktion nimi on TTEST (TTESTI). Vanha funktion nimi toimii edelleen uudemmissa Excelin versioissa.

Esimerkki. Tiedostossa reaktioajat.xlsx on kuvitteellinen esimerkkiaineisto reaktioajoista. Ensimmäisen otoksen reaktioajat ovat soluissa C2:C16 ja toisen otoksen reaktioajat soluissa C17:C31. P-arvon laskemiseen (kaksisuuntainen, erisuurten varianssien testi) voin käyttää funktiota =T.TEST(C2:C16;C17:C31;2;3)

Esimerkkiaineiston p-arvo on noin 0,006 (0,6 %), mikä tarkoittaa tilastollisesti merkitsevää keskiarvojen eroa.

Testin tulosten raportointi

Tuloksen voin raportoida monellakin tavalla. Tärkeintä on, että otosten keskiarvot, keskihajonnat, otoskoot ja testin p-arvo ovat näkyvillä. Esimerkiksi:

Alkoholia nauttineiden reaktioaikojen keskiarvo 0,237 sekuntia (keskihajonta = 0,035, n=15) poikkesi raittiiden reaktioaikojen keskiarvosta 0,205 sekuntia (keskihajonta = 0,020, n=15). Ero osoittautui riippumattomien otosten t-testillä merkitseväksi: t(22) = -3,045, p = 0,006, 2-suuntainen.

Tieteellisessä tekstissä t-testimuuttujan arvo täytyy ilmoittaa yhdessä vapausasteluvun df kanssa: t(22) = -3,045. Testimuuttujan arvon ja vapausasteluvun saat Excelin analyysityökaluilla (katso reaktioajat.xlsx) tai käyttämällä valmista laskentapohjaa tiedostossa otantavirhe.xlsx.

SPSS

Jos haluat suorittaa testauksen SPSS:llä, niin lue artikkelini SPSS: Kahden riippumattoman otoksen vertailu.

Muita menetelmiä kahden riippumattoman otoksen vertailuun

Kahden riippumattoman otoksen t-testi soveltuu kokeelliseen tutkimusasetelmaan, jossa vertaillaan kahta riippumatonta otosta, kuten tämän artikkelin reaktioaika-esimerkissä. Testiä voidaan käyttää myös ei-kokeellisissa tutkimusasetelmissa. Esimerkiksi kyselytutkimusainestossa voidaan verrata eläkeläisten ja työssäkäyvien TV:n katseluun käytettyä aikaa.

Jos kahden riippumattoman otoksen t-testi ei tule kysymykseen, niin tarjolla on monia muita menetelmiä ryhmien välisen eron testaamiseen. Lue lisää artikkelistani Onko ryhmien välinen ero tilastollisesti merkitsevä?

Kahden riippuvan otoksen vertailu

Miesten reaktioaikaa voin tutkia myös toisenlaisella tutkimusasetelmalla:

  • valitsen otoksen miehiä
  • mittaan otoksen miehille reaktioajan ilman alkoholin vaikutusta
  • mittaan otoksen miehille reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kullekin miehelle reaktioaikojen eron
  • lasken reaktioaikojen erojen keskiarvon.

Kumpaakin mittausta voin pitää omana otoksenaan, mutta kyseessä ovat toisistaan riippuvat otokset (kyseessähän ovat samat miehet). Tällaisessa asetelmassa otosten vertailuun täytyy käyttää riippuvien otosten t-testiä.

Usein kysyttyä

Kysymys: Olen laskenut keskiarvot ja keskihajonnat, mutta alkuperäinen aineisto ei ole Excelissä. Voinko silti laskea kahden otoksen t-testin.

Vastaus: Voit. Käytä Exceliin laatimaani laskentapohjaa otantavirhe.xlsx. Syötä laskentapohjaan molempien otosten otoskoot, keskiarvot ja keskihajonnat.

Kysymys: Millä tavoin erisuurten ja yhtäsuurten varianssien t-testien laskentatavat eroavat toisistaan?

Vastaus: Lue lisätietoa.

Kysymys: Voinko laskea virhemarginaalin otoskeskiarvojen erolle?

Vastaus: Kyllä. Lue lisätietoa ja käytä Exceliin laatimaani laskentapohjaa otantavirhe.xlsx. Syötä laskentapohjaan molempien otosten otoskoot, keskiarvot ja keskihajonnat.

Korrelaatio ja sen merkitsevyys

Päivitetty 17.4.2019. Tämä on Akin menetelmäblogin luetuin artikkeli!

Hallitset jo toivottavasti ristiintaulukoinnin. Ristiintaulukointi on sopiva menetelmä kahden kategorisen muuttujan riippuvuuden tarkasteluun. Kahden määrällisen muuttujan riippuvuutta puolestaan tarkastellaan hajontakaavion ja korrelaatiokertoimen avulla.

Hajontakaavio

Käytän esimerkkinä tiedostosta korrelaatio.xlsx löytyvää dataa, jossa on kolme muuttujaa: opiskelijan läsnäolo lähiopetustunneilla, suoritettujen harjoitustehtävien lukumäärä ja tentin pistemäärä. Haluan selvittää onko lähiopetustunneille osallistumisella ja suoritettujen harjoitustehtävien lukumäärällä yhteyttä tenttipistemäärään.

Saan havainnollisen kuvan asiasta tekemällä hajontakaaviot. Excelissä hajontakaavio on nimeltään Scatter (Piste). Läsnäolon ja tenttipisteiden välisessä hajontakaaviossa en näe merkittävää yhteyttä, vaan havaintopisteet ovat melko satunnaisesti jakautuneet.

Suoritetut harjoitustehtävät sen sijaan näyttävät olevan positiivisessa yhteydessä tenttipistemäärään. Hajontakaaviossa tämä näkyy selvästi nousevana pisteparvena. Alhaiset harjoitustehtävien määrät näyttävät liittyvän alhaisiin tenttipistemääriin ja korkeat harjoitustehtävien määrät näyttävät liittyvän korkeisiin tenttipistemääriin.

Korrelaatiokerroin

Korrelaatiokerroin on tunnusluku suoraviivaisen riippuvuuden voimakkuudelle. Excelissä voin laskea korrelaation funktiolla CORREL (KORRELAATIO). Funktion ensimmäiseksi lähtötiedoksi annetaan viittaus ensimmäisen muuttujan arvoihin ja toiseksi lähtötiedoksi viittaus toisen muuttujan arvoihin.

Korrelaatiokertoimen arvo voi olla mitä tahansa -1 ja +1 väliltä. Lähellä nollaa olevat kertoimet liittyvät tilanteisiin, joissa ei ole suoraviivaista riippuvuutta. Lähellä +1 olevat kertoimet viittaavaat positiiviseen riippuvuuteen (nouseva pisteparvi hajontakaaviossa) ja lähellä -1 olevat kertoimet viittaavat negatiiviseen riippuvuuteen (laskeva pisteparvi hajontakaaviossa).

korre

Esimerkkidatassa läsnäolon ja tenttipistemäärän välinen korrelaatiokerroin on 0,27 ja harjoitusten ja tenttipistemäärän välinen korrelaatiokerroin on 0,84. Korrelaatiokertoimet siis kertovat samaa kuin hajontakaaviot.

Korrelaation merkitsevyys

Jos data pohjautuu laajemmasta perusjoukosta satunnaisesti valittuun otokseen, niin tietyin edellytyksin voin yleistää otoksen tuloksia perusjoukkoon. Korrelaation tapauksessa tämä tarkoittaa muuttujien välisen korrelaation yleistämistä perusjoukkoon.

Pienet korrelaatiot voin selittää otantavirheellä. Otoksessa havaitun korrelaation täytyy olla riittävän suuri, jotta voin yleistää sen perusjoukkoon. Suuruutta testaan vertaamalla korrelaatiokerrointa hypoteettiseen tilanteeseen, jossa ei ole lainkaan korrelaatiota (korrelaatiokerroin on 0). Jos otoksesta laskettu korrelaatiokerroin poikkeaa riittävästi nollasta, niin voin kutsua korrelaatiota tilastollisesti merkitseväksi.

Korrelaatiokertoimen merkitsevyyden testaamiseksi lasketaan niin kutsuttu p-arvo, joka vastaa seuraavaan kysymykseen: kuinka todennäköistä on saada havaitun suuruinen tai vielä kauempana nollasta oleva korrelaatiokertoimen arvo ilman että korrelaatiota on perusjoukossa? Mitä pienempi p-arvo on sitä enemmän korrelaation yleistäminen perusjoukkoon saa tukea.

Vakiintuneen tavan mukaisesti alle 0,05 (5 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa esiintyvän korrelaation puolesta.

Jos haluat tietää p-arvon laskentaperusteesta, niin lue artikkeli Korrelaatio – lisätietoa.

Voit käyttää p-arvon laskemiseen valmista laskentapohjaa testaa_korrelaatio.xlsx. Kirjoita laskentapohjaan otoskoko ja korrelaatiokerroin, jonka jälkeen voit lukea p-arvon. Käytä 2-suuntaista p-arvoa, jos testaat sitä onko korrelaatio nollasta poikkeava. Käytä 1-suuntaista p-arvoa, jos testaat pelkästään korrelaation positiivisuutta tai pelkästään korrelaation negatiivisuutta.

Jos testaan läsnäolotuntien ja tenttipistemäärän välisen korrelaation positiivisuutta, niin saan 1-suuntaiseksi p-arvoksi 0,143 (otoskoko 17, korrelaatiokerroin 0,2746). Tuloksen voin raportoida esimerkiksi seuraavasti (yleisesti käytössä oleva merkintä korrelaatiokertoimelle on r):

Läsnäolotuntien ja tenttipistemäärän välillä ei ole tilastollisesti merkitsevää positiivista korrelaatiota (r=0,27; n=17; 1-suuntaisen testin p-arvo=0,143).

Jos testaan suoritettujen harjoitusten ja tenttipistemäärän välisen korrelaation positiivisuutta, niin saan 1-suuntaiseksi p-arvoksi 0,000 (otoskoko 17, korrelaatiokerroin 0,8438). Tuloksen voin raportoida esimerkiksi seuraavasti:

Suoritettujen harjoitusten ja tenttipistemäärän välillä on positiivinen korrelaatio (r=0,84; n=17; 1-suuntaisen testin p-arvo<0,001).

Tilastollisen merkitsevyyden ohella kannattaa pohtia myös käytännön merkitsevyyttä. Korrelaatiokerroin voi olla tilastollisesti merkitsevä ja silti vailla käytännön merkitsevyyttä. Yksinkertainen tapa käytännön merkitsevyyden arviointiin on hajontakaavion tarkastelu. Jos et näe hajontakaavion pisteparvessa merkittävää säännönmukaisuutta niin saattaa olla että korrelaatiolla ei ole käytännön merkitsevyyttä.

Poikkeavat arvot

Hajontakaaviossa selvästi muista poikkeavat pisteet ovat ongelmallisia korrelaatiokerrointa käytettäessä. Lue lisää artikkelista Poikkeavat arvot.

Lisätietoa

Artikkelissa Korrelaatiokerroin – lisätietoa on yksityiskohtaisempaa tietoa korrelaatiokertoimen laskennasta, p-arvon laskennasta ja ohje korrelaatiokertoimen luottamusvälin laskentaan.

SPSS

SPSS tulostaa korrelaatiokerrointen yhteyteen automaattisesti p-arvot. Lue lisää SPSS monisteesta spss19.pdf.

Keskiarvon virhemarginaali

Päivitetty 19.4.2019.

Otoksen keskiarvo on otoksen keskiarvo. Jos yleistän otoskeskiarvon laajempaan perusjoukkoon, niin minun täytyy huomoida otantavirheen aiheuttama epävarmuus. Otantavirheen aiheuttaman epävarmuuden ilmaisen virhemarginaalin avulla.

Virhemarginaalin laskeminen ja tulkinta

Funktiolla CONFIDENCE.T (LUOTTAMUSVÄLI.T) voin laskea virhemarginaalin. Funktiolle annan kolme lähtötietoa:

  1. 5 % (jos lasken 95 % virhemarginaalin)
  2. otoksen keskihajonta
  3. otoskoko.

Esimerkki.  Eräästä ammattiryhmästä valittiin 200 henkilön satunnaisotos. Henkilöiltä kysyttiin kesän aikana lomamatkoihin käytettyä rahamäärää. Otoksen keskiarvoksi laskettiin 562 € ja keskihajonnaksi 119 €. Virhemarginaaliksi saan funktiolla =CONFIDENCE.T(5 %;119;200) noin 17 €. Virhemarginaalin avulla voin laskea luottamusvälin alarajan 562-17=545 ja ylärajan 562+17=579. Tämä tarkoittaa sitä, että 95 % varmuudella perusjoukon keskiarvo on välillä 545 € – 579 €. Tuloksen voin raportoida esimerkiksi seuraavasti:

Ammattiryhmän jäsenet (n=200) käyttivät kesän aikana lomamatkoihin keskimäärin 562 € (keskiarvo). Keskiarvon 95 % luottamusväli on 545 € – 579 €.

Voit laskea virhemarginaalin ja luottamusvälin myös valmista laskuria käyttäen: virhemarginaali.xlsx.

Tärkeää

Virhemarginaalin arvo on luotettava ainoastaan jos otos on valittu perusjoukosta asianmukaista otantamenetelmää käyttäen.

Usein kysyttyä

Kysymys: Millä laskentakaavalla Excel laskee virhemarginaalin?

Vastaus: CONFIDENCE.T laskee virhemarginaalin kaavalla

virhemarg

Kriittinen arvo kerrotaan otoksesta lasketulla keskihajonnalla ja jaetaan otoskoon neliöjuurella. Kriittinen arvo on t-jakaumasta peräisin oleva otoskoosta riippuva arvo. Mitä isompi otos sitä enemmän t-jakauma alkaa muistuttaa normaalijakaumaa. Tähän perustuen joissain lähteissä kriittisenä arvona käytetään normaalijakauman kriittistä arvoa 1,96. Jos haluat tietää enemmän, niin lue lisätietoa.

Kysymys: Miten menetellään, jos perusjoukon keskihajonta on tiedossa?

Vastaus: Tällöin on aivan oikein käyttää laskennassa normaalijakauman kriittistä arvoa 1,96. Tätä varten on oma funktio CONFIDENCE.NORM (LUOTTAMUSVÄLI.NORM), jonka toisena lähtötietona on perusjoukon keskihajonta.

Tunnuslukuja

Päivitetty 21.4.2019.

Määrällisten muuttujien tapauksessa ei kannata pihtailla tunnuslukujen kanssa. Määrälliselle muuttujalla kannattaa laskea ainakin

  • keskiarvo ja keskihajonta
  • viiden luvun yhteenveto (pienin, alaneljännes eli alakvartiili, mediaani, yläneljännes eli yläkvartiili, suurin)
  • havaintojen lukumäärä (n).

Keskiarvo ja mediaani

Keskiarvo (arvojen summa jaettuna arvojen lukumäärällä) ja mediaani (suuruusjärjestykseen järjestettyjen arvojen keskimmäinen tai kahden keskimmäisen keskiarvo) pyrkivät mittaamaan jakauman keskikohtaa. Jos keskiarvo ja mediaani ovat lähellä toisiaan, niin tämä viittaa jakauman symmetrisyyteen. Muista arvoista selvästi poikkeavat arvot vaikuttavat voimakkaasti keskiarvoon:

  • Jos keskiarvo on mediaania suurempi, niin tämä viittaa oikealle vinoon jakaumaan.
  • Jos keskiarvo on mediaania pienempi, niin tämä viittaa vasemmalle vinoon jakaumaan.

Poikkeavista arvoista ja niihin suhtautumisesta voit lukea lisää artikkelista Poikkeavat arvot.

Jos keskiarvo ja mediaani poikkeavat selvästi toisistaan, niin mediaani on yleensä paremmin jakauman keskikohtaa kuvaava luku.

Keskihajonta

Keskihajonta pyrkii mittaamaan arvojen vaihtelua keskiarvon molemmin puolin. Keskihajonta ilmaisee havaintojen keskimääräisen poikkeaman keskiarvosta. Pelkästään keskihajonnan lukuarvon perusteella on vaikeaa muodostaa mielikuvaa arvojen vaihtelusta. Keskihajonta on kuitenkin tilastollisessa mielessä tärkeä tunnusluku, jota käytetään muun muassa keskiarvon virhemarginaalin laskemiseen.

Viiden luvun yhteenveto

Viiden luvun yhteenveto antaa hyvän kuvan arvojen vaihtelusta. Viiden luvun yhteenvedon avulla arvojen vaihteluväli pienimmästä suurimpaan jaetaan neljään osaan:

  • pienimmän ja alanejänneksen välinen osa sisältää 25 % arvoista
  • alaneljänneksen ja mediaanin välinen osa sisältää 25 % arvoista
  • mediaanin ja yläneljänneksen välinen osa sisältää 25 % arvoista
  • yläneljänneksen ja suurimman välinen osa sisältää 25 % arvoista.

Laskenta Excelin funktioilla

Voin laskea tunnuslukuja datan yläpuolelle, alapuolelle, viereen, toiseen taulukkoon  tai jopa  toiseen työkirjaan. Minulla on tapana laskea tunnuslukuja datan yläpuolelle. Tätä varten lisään datan yläpuolelle riittävän määrän tyhjiä rivejä (yhden enemmän kuin laskettavia tunnuslukuja, jotta tunnuslukujen ja datan väliin jää tyhjä rivi). Jollen tarvitse ensimmäiseen sarakkeeseen tunnuslukuja, niin kirjoitan siihen itseäni varten laskettavien tunnuslukujen nimet (keskiarvo, keskihajonta jne.). Tunnuslukujen laskennan suoritan Excelin funktioilla:

  • =AVERAGE(alue) (KESKIARVO)
  • =STDEV.S(alue) (KESKIHAJONTA.S)
  • =MIN(alue) (MIN)
  • =PERCENTILE.EXC(alue;25 %) (PROSENTTIPISTE.ULK)
  • =MEDIAN(alue) (MEDIAANI)
  • =PERCENTILE.EXC(alue;75 %) (PROSENTTIPISTE.ULK)
  • =MAX(alue) (MAKS)
  • =COUNT(alue) (LASKE)

Funktioiden vaatima lähtötieto ’alue’ on viittaus arvoihin, joista tunnusluku lasketaan. Alaneljännes ja yläneljännes lasketaan samalla funktiolla PERCENTILE.EXC, jolle pitää ylimääräisenä lähtötietona antaa 25 % (alaneljännes) tai 75 % (yläneljännes). Huomaa, että lähtötietojen väliin kirjoitetaan puolipiste.

Vanhempien Excel-versioiden käyttäjille: Excel 2010:een tuli joitain uudistuksia funktioihin. Excel 2007 ja sitä vanhemmissa käytetään STDEV.S sijasta funktiota STDEV (KESKIHAJONTA) ja PERCENTILE.EXC sijasta funktiota PERCENTILE (PROSENTTIPISTE). PERCENTILE.EXC saattaa antaa hieman PERCENTILE-funktiosta poikkeavan tuloksen, mutta erolla ei yleensä ole käytännön merkitystä (lisätietoa). Vanhat funkiot toimivat edelleen uudemmissa versioissa.

Seuraavassa olen lisännyt 9 tyhjää riviä datan data1.xlsx yläpuolelle. Esimerkiksi keskiarvon olen laskenut funktiolla =AVERAGE(B11:B92) ja alaneljänneksen funktiolla =PERCENTILE.EXC(B11:B92;25 %). Sarakkeeseen B laskemani funktiot olen kopioinut muihin sarakkeisiin: Valitsin solut B1:B8, tartuin hiirellä kiinni valittujen solujen oikean alakulman neliöstä ja vedin oikealle.

Kuvaamallani menettelyllä tulen laskeneeksi tarpeettomiakin tunnuslukuja. Esimerkiksi sukupuolelle ainoastaan vastausten lukumäärä (n) on käyttökelpoinen tunnusluku. Tarpeettomia tunnuslukuja en tietenkään raportoi.

Raportointia varten tunnuslukuja kannattaa kopioida uuteen taulukkoon. Liittäminen täytyy tehdä arvoina käyttäen Paste Values (Liitä arvot) -toimintoa. Desimaalien määrä täytyy säätää tilanteeseen sopivaksi. Esimerkiksi palkkaan liittyvät tunnusluvut voin esittää seuraavasti:

Taulukosta näen keskiarvoa ja mediaania vertaamalla, että aineistossa on joitain erityisen suuria palkkoja. Tämä käsitys vahvistuu, kun katson suurinta arvoa. Viiden luvun yhteenveto antaa hyvän mielikuvan siitä miten palkat ovat jakaantuneet. Voin esimerkiksi todeta, että puolella työntekijöistä palkka on välillä 2027 euroa – 2817 euroa.

Tunnuslukuja ryhmittäin

Jos haluan vertailla miesten ja naisten palkkajakaumaa, niin lasken palkan tunnuslukuja sukupuolen määräämissä ryhmissä. Voin tehdä tämän esimerkiksi seuraavasti:

  • Lasken tunnusluvut koko aineistolle.
  • Lajittelen (järjestän) aineiston ryhmittelevän muuttujan (esimerkiksi sukupuoli) mukaan.
  • Teen aineistosta kopioita (pidän  ctrl-näppäintä alhaalla ja raahan alareunan taulukonvalitsinta hieman oikealle).
  • Poistan kopioista ne rivit, jotka eivät kuulu haluamaani osa-aineistoon.
  • Osa-aineiston tunnusluvut voin kopioida uuteen taulukkoon vierekkäin, jolloin vertailu käy mahdolliseksi.

Toinen mahdollisuus on käyttää AGGREGATE (KOOSTE) -funktiota yhdessä aineiston suodatuksen kanssa.

 Aggregate-funktio

Voin laskea tunnusluvut siten, että tunnusluvun arvo vaihtuu aineiston suodatuksen (Filter) mukana. Jos suodatus ei ole sinulle tuttua, niin lue artikkeli Excel Table (Taulukko). Laskennan toteutan käärimällä tunnuslukufunktion AGGREGATE (KOOSTE) -funktion sisään.

  • Aloitan funktion rakentamisen kirjoittamalla suoraan tyhjään soluun funktion nimen alkua =AG, jonka jälkeen Excel jo ehdottaakin AGGREGATE-funktiota. Jos hyväksyn Excelin ehdotuksen tab/sarkain-näppäimellä, niin Excel täydentää funktion nimen ja lisää sulkumerkin =AGGREGATE(.
  • Sulkumerkin jälkeen Excel tarjoaa luetteloa tilastollisia tunnuslukuja laskevista funktioista. Valitsen luettelosta haluamani funktion. Voin liikkua luettelossa nuolilla ja valita tab/sarkain-näppäimellä tai hiiren kaksoisnapsauksella.
  • Seuraavaksi kirjoitan lähtötietojen väliin erotinmerkiksi puolipisteen ;
  • Puolipisteen jälkeen Excel tarjoaa monenlaisia oudonnäköisiä vaihtoehtoja, joista valitsen vaihtoehdon 5 (Ignore hidden rows), jonka ansiosta funktio reagoi suodatuksiin.
  • Seuraavaksi kirjoitan lähtötietojen väliin erotinmerkiksi puolipisteen ;
  • Puolipisteen jälkeen näytän hiirellä ne arvot, joista lasken tunnuslukua.
  • Jos en ole laskemassa ala- tai yläneljännestä, niin kirjoitan sulkumerkin ) ja napsautan enter-painiketta. Jos olen laskemassa ala- tai yläneljännestä, niin kirjoitan puolipisteen ; ja viimeiseksi argumentiksi 25 % (alaneljännes) tai 75 % (yläneljännes).

Voin tämän jälkeen todeta, miten funktion tulos vaihtuu suodatusten mukana. Voin helposti esimerkiksi suodattaa näkyville miehet ja kopioida miesten tunnusluvut jonnekin. Tämän jälkeen voin suodattaa näkyville naiset ja kopioida naisten tunnusluvut miesten tunnuslukujen viereen. Muistan tietysti käyttää liittämiseen Paste Values (Liitä arvot) -toimintoa.

Pienin palkka näyttää olevan miehellä. Miesten ja naisten alaneljännekset eivät poikkea paljoa toisistaan. Mediaani ja yläneljännes ovat miehillä selvästi suuremmat. Naisten joukossa ei ole suuripalkkaisia lainkaan.

Graafinen esittäminen

Graafiseen esittämiseen ruutu- ja janakaavio on erinomainen valinta. Ruutu- ja janakaavio havainnollistaa viiden luvun yhteenvedon.

Seuraavaksi

Katso Excel-esimerkkejä tunnuslukuja.xlsx.

Otoskesta lasketut tunnusluvut kuvailevat lähtökohtaisesti otosta. Jos otoksesta laskettuja tunnuslukuja yleistetään laajempaan perusjoukkoon, niin yleistämiseen liittyy otantavirheen aiheuttamaa epävarmuutta. Keskiarvon kohdalla epävarmuuden suuruus voidaan ilmaista virhemarginaalin avulla. Tästä enemmän artikkelissa Keskiarvon virhemarginaali.

Mielipideasteikon keskiarvo

Päivitetty 17.4.2019.

Datassa data1.xlsx on muiden muassa vastauksia kysymyksiin, joissa on kysytty tyytyväisyyttä eri asioihin. Asteikkona on viisiportainen mielipideasteikko:

  • 1 erittäin tyytymätön
  • 2 tyytymätön
  • 3 ei tyytymätön eikä tyytyväinen
  • 4 tyytyväinen
  • 5 erittäin tyytyväinen

Mielipiteiden jakauman voin esittää yhteenvetotaulukkona, jossa on eri mielipiteiden lukumäärät (ja/tai prosentit). Tästä voit lukea aiemmasta artikkelistani 3 Taulukointi. Jos haluan esittää pikayhteenvedon tyytyväisyyksistä eri asioihin, niin voin laskea mielipiteiden keskiarvot:

Keskiarvon perusteella voin muodostaa mielikuvan vastaajien keskimääräisestä mielipiteestä. Erityisesti tarkastan kaksi asiaa:

  • Onko keskiarvo tyytymättömän vai tyytyväisen puolella eli alle vai yli 3?
  • Kuinka kaukana asteikon keskikohdasta keskiarvo on?

Keskihajonta ilmaisee, kuinka paljon mielipiteet keskimäärin poikkeavat keskiarvosta? Keskihajonnan perusteella voin muodostaa mielikuvan mielipiteiden vaihtelusta. Mitä suurempi keskihajonta, sitä enemmän mielipiteet ovat vaihdelleet.

On tärkeää ilmoittaa myös keskiarvon taustalla olevien mielipiteiden eli vastausten lukumäärä (n).

Voinko käyttää keskiarvoja?

Joissain menetelmäoppaissa kielletään, toisissa taas sallitaan keskiarvon käyttö mielipideasteikon yhteydessä. Keskiarvon käyttökieltoa perustellaan sillä, että mielipide on kategorinen (tarkemmin ottaen järjestysasteikollinen) muuttuja, jolle ei ole mielekästä laskea keskiarvoa. Tällöin ajatellaan, että mielipeasteikko ei mittaa tasavälisesti mielipiteen määrää. Keskiarvon käyttöä taas perustellaan sillä, että mielipideasteikkoa voidaan pitää kuta kuinkin tasavälisenä asteikkona, joka mittaa mielipiteen määrää. Tätä perustelua ei kuitenkaan voida vastaansanomattomasti osoittaa oikeaksi.

Käytäntö on osoittanut, että keskiarvot antavat useimmissa tapauksissa oikeansuuntaisen ja käyttökelpoisen arvion keskimääräisestä mielipiteestä. Keskiarvon käytössä kannattaa kuitenkin huomoida seuraavat seikat:

  • Mielipiteiden jakauma pitää aina tarkistaa lukumäärä/prosentti-taulukosta. Erikoisten jakaumien kohdalla keskiarvoihin pitää suhtautua varoen. Äärimmäinen esimerkki: Viisiportaisen mielipideasteikon keskiarvoksi saadaan 3, jos kaikki mieliteet ovat 3; samaan keskiarvoon päädytään jos puolet mielipiteistä on 1 ja puolet 5.
  • Keskiarvon lisäksi kannattaa laskea keskihajonta, joka mittaa mielipiteiden vaihtelua.
  • Jos vastaajille on tarjottu muitakin vaihtoehtoja kuin varsinaisen mielipideasteikon arvoja (esimerkiksi ’En tiedä asiasta’), niin nämä täytyy jättää keskiarvon laskennan ulkopuolelle. Tämän voin käytännössä toteuttaa tekemällä aineistostani keskiarvojen laskentaa varten kopion, jossa korvaan laskennan ulkopuolelle jätettävät arvot tyhjillä soluilla tai tekstimuotoisella tiedolla Excelin Home (Aloitus) -välilehden Find&Select – Replace (Etsi ja valitse – Korvaa) -toiminnolla.
  • Lukumäärät ja/tai prosentit sisältävä yhteenvetotaulukko on tyhjentävä esitys mielipiteiden jakaumasta ja näin ollen aina tarkempi kuin keskiarvo.

Kukin tehköön oman ratkaisunsa keskiarvojen käyttämisestä tai käyttämättä jättämisestä.

Keskiarvojen laskenta pivot-taulukkoon

Jos haluan laskea keskiarvot datan data1.xlsx tyytyväisyysmuuttujille, niin toimin seuraavasti:

  • Valitsen täsmälleen yhden solun datan alueelta.
  • Valitsen Insert (Lisää) -välilehdeltä PivotTable (Pivot-taulukko).
  • Raahaan tyytyväisyysmuuttujat yksi kerrallaan kenttäluettelon (PivotTable Field List) Values (Arvot) -ruutuun.
  • Vaihdan kunkin Values (Arvot) -ruudun kentän laskentaperusteeksi Average (Keskiarvo). Laskentaperusteen vaihtoon pääsen napsauttamalla kenttää ja valitsemalla avautuvasta valikosta Value Field Settings (Arvokentän asetukset).
  • Lopuksi raahaan sarakeotsikoiden (Column Labels)  Values (Arvot) -palikan riviotsikoihin (Row Labels), jotta saan keskiarvot allekkain.

Pivot-taulukko pitkine otsikoineen ja liikoine desimaaleineen kaipaa jonkin verran viimeistelyä.

Keskihajonnat saan laskettua vastaavalla tavalla:

  • Valitsen täsmälleen yhden solun datan alueelta.
  • Valitsen Insert (Lisää) -välilehdeltä PivotTable (Pivot-taulukko).
  • Raahaan tyytyväisyysmuuttujat yksi kerrallaan kenttäluettelon (PivotTable Field List) Values (Arvot) -ruutuun.
  • Vaihdan kunkin Values (Arvot) -ruudun kentän laskentaperusteeksi StdDev (Keskihajonta). Laskentaperuteen vaihtoon pääsen napsauttamalla kenttää ja valitsemalla avautuvasta valikosta Value Field Settings (Arvokentän asetukset).
  • Lopuksi raahaan sarakeotsikoiden (Column Labels)  Values (Arvot) -palikan riviotsikoihin (Row Labels), jotta saan keskihajonnat allekkain.

Tämän jälkeen teen vielä kolmannen pivot taulukon, johon lasken vastausten määrät (Count).

Voin kopioida keskiarvot, keskihajonnat ja vastausten määrät uuteen taulukkoon vierekkäin.

Jos tarkasteltavilla asioilla ei ole mitää luontaista järjestystä, niin tunnuslukuja sisältävä taulukko kannattaa järjestää keskiarvojen mukaiseen järjestykseen.

Järjestämisen voin tehdä valitsemalla taulukon sisällön sarakeotsikoita lukuunottamatta. Tämän jälkeen valitsen Home (Aloitus) -välilehdeltä Sort&Filter – Custom Sort (Lajittele ja suodata – Mukautettu lajittelu). Lajitteluperusteeksi (Sort by) valitsen keskiarvon.

Taulukosta nähdään, että kaikkein tyytymättömimpiä oltiin palkkaan (keskiarvo=2,1) ja kaikkein tyytyväisimpiä työtovereihin (keskiarvo=4,1). Muiden asioiden kohdalla keskiarvot ovat lähellä mielipideasteikon keskikohtaa. Tyytyväisyys työympäristöön jakoi mielipiteitä eniten (keskihajonta=1,2). Tyytyväisyys palkkaan jakoi mielipiteitä vähiten (keskihajonta=0,8).

Graafinen esittäminen

Huolellisesti viimeistelty keskiarvot, keskihajonnat ja n-arvot sisältävä taulukko on havainnollinen ja  täsmällinen esitystapa. Näin ollen graafista esittämistä ei tarvita. Jos kuitenkin haluat havainnollistaa keskiarvoja graafisesti, niin voit käyttää pylväskaaviota.

On tärkeää katkaista arvoakseli alkamaan mielipideasteikon pienimmän arvon kohdalta (tässä 1). Myös arvoakselin otsikointiin on kiinnitettävä erityistä huomiota. Jos haluat kerrata/opetella kaavioiden tekemistä ja muotoilua, niin voit hyödyntää itseopiskelupakettiani kaavio.xlsx.

Keskiarvoja ryhmissä

Jos olen laskenut tunnuslukuja pivot-taulukkoon, niin voin tarkastella tunnuslukuja ryhmittäin raahaamalla ryhmittelevän muuttujan sarakeotsikoihin (Column Labels). Siistimisen jälkeen tyytyväisyys-muuttujien keskiarvot sukupuolittain näyttävät seuraavalta:

On tärkeää, että näkyvillä on n-arvo, josta nähdään kuinka monesta havainnosta keskiarvot on laskettu. Jos n-arvoissa on vaihtelua puuttuvien vastausten takia, niin riittää ilmoittaa n pienimmillään. Esimerkkimme tapauksessa n-arvoista paljastuu, että naisia ei ole aineistossa kuin 19 kpl. Näin pienen otoksen kohdalla keskiarvoihin täytyy suhtautua varoen. Myös keskihajontojen esittäminen sukupuolittain voisi olla paikallaan. Keskihajonnat voi liittää omiin sarakkeisiinsa samaan taulukkoon keskiarvojen kanssa, mutta tämä luonnollisesti heikentää taulukon luettavuutta. Toinen vaihtoehto on esittää keskihajonnat kokonaan omana taulukkonaan.

Jos haluan graafista havainnollistusta, niin voin käyttää pylväskaaviota:

On tärkeää katkaista arvoakseli alkamaan mielipideasteikon pienimmän arvon kohdalta (tässä 1). Myös arvoakselin otsikointiin on kiinnitettävä erityistä huomiota. Jos haluat kerrata/opetella kaavioiden tekemistä ja muotoilua, niin voit hyödyntää itseopiskelupakettiani kaavio.xlsx.

Seuraavaksi

Voin laskea tilastollisia tunnuslukuja Excelin funktioilla. Tämä on monessa mielessä jopa kätevämpää kuin tunnuslukujen laskenta pivot-taulukkoon. Lisäksi tällöin käytössäni on sellaisiakin tunnuslukuja, joita ei ole mahdollista laskea pivot-taulukkoon. Funktioiden käytöstä lisää artikkelissa 8 Tunnuslukja.

Ristiintaulukointi ja khiin neliö -testi

Päivitetty 17.4.2019.

Jos datani pohjautuu laajemmasta perusjoukosta satunnaisesti valittuun otokseen, niin tietyin edellytyksin voin yleistää otoksen tuloksia perusjoukkoon. Ristiintaulukoinnin tapauksessa tämä tarkoittaa taulukossa havaitun riippuvuuden tai ryhmien välisen eron yleistämistä perusjoukkoon.

Otoksessa havaitun riippuvuuden tai ryhmien välisen eron täytyy olla riittävän suuri, jotta voin yleistää sen perusjoukkoon. Jos riippuvuus tai ryhmien välinen ero on pieni, niin tämän voin selittää otantavirheellä. Riippuvuuden tai eron suuruutta testaan vertaamalla hypoteettiseen tilanteeseen, jossa ei ole lainkaan riippuvuutta tai lainkaan eroja ryhmien välillä. Vertailun toteuttamiseksi lasken ristiintaulukoinnin rinnalle toisen ristiintaulukoinnin, joka vastaa hypoteettista tilannetta.

Tärkeää: Vaikka ristiintaulukoinnissa on havainnollisempaa esittää prosentit kuin lukumäärät, niin khiin neliö -testauksen lähtökohtana käytetään aina lukumääriä.

Hypoteettisen ristiintaulukoinnin laskeminen

Käytän seuraavassa esimerkkidataa data1.xlsx. Datasta laskettu sukupuolen ja tyytyväisyys työympäristöön välinen ristiintaulukointi näyttää seuraavalta:

Taulukossa on havaittavissa ero miesten ja naisten mielipiteissä (naiset tyytyväisempiä). Eron suuruuden selville saamiseksi lasken hypoteettisen ristiintaulukoinnin, jossa eroa ei ole. Hypoteettisessa taulukossa miesten ja naisten yhteismäärien pitää olla havaitun taulukon mukaiset samoin eri mielipiteitä omaavien yhteismäärät.

Hypoteettisen taulukon lukumäärät saan kertomalla havaitun taulukon rivi- ja sarakesummat keskenään ja jakamalla kokonaissummalla (82). Esimerkiksi erittäin tyytymättömien miesten lukumääräksi saan  (9*63)/82 eli noin 6,9. Laskentamenetelmä perustuu todennäköisyyslaskentaan:

  • Jos erittäin tyytymättömiä on 9, niin todennäköisyys sille että otoksesta sattumanvaraisesti valittu on erittäin tyytymätön on 9/82.
  • Jos miehiä on 63, niin todennäköisyys sille että otoksesta sattumanvaraisesti valittu on mies on 63/82.
  • Todennäköisyyden sille että otoksesta sattumanvaraisesti valittu on erittäin tyytymätön mies saan kertomalla todennäköisyydet 9/82 ja 63/82 keskenään. Kyseinen todennäköisyys kertoo samalla erittäin tyytymättömien miesten prosenttiosuuden siinä tapauksessa että miesten ja naisten mielipiteillä ei ole eroa.
  • Laskemalla erittäin tyytymättömien miesten lukumäärä erittäin tyytymättömien miesten prosenttiosuutta käyttäen saan (9/82)*(63/82)*82. Sievennyksen jälkeen tästä tulee (9*63)/82.

Jos lasken taulukon muihin soluihin lukumäärät vastaavalla tavalla (rivisumman ja sarakesumman tulo jaettuna kokonaissummalla), niin saan seuraavan taulukon:

Taulukon lukumääriä kutsutaan odotetuiksi lukumääriksi tai odotetuiksi frekvensseiksi (expected frequencies) ja ne siis vastaavat hypoteettista tilannetta, jossa sukupuolen ja mielipiteen välillä ei ole riippuvuutta (miesten ja naisten mielipiteissä ei ole eroa).

Testin käyttöedellytykset

Havaitun taulukon ja hypoteettisen taulukon eron testaaminen ei ole luotettavaa, jos hypoteettisen taulukon lukumäärät eli odotetut frekvenssit ovat liian pieniä. Kirjallisuudessa annetaan hieman toisistaan poikkeavia rajoja sille, milloin testaaminen muuttuu epäluotettavaksi. Monissa lähteissä esitetään seuraavat kriteerit testaamisen luotettavuudelle:

  • Taulukossa, jossa on kaksi riviä ja kaksi saraketta (2×2 taulukko) ei saa olla yhtään alle viiden (5) suuruista odotettua frekvenssiä.
  • Suuremmissa taulukoissa alle viiden (5) suuruisia odotettuja frekvenssejä saa olla viidesosa (20 %) kaikista odotetuista frekvensseistä. Alle yhden (1) suuruisia odotettuja frekvenssejä ei saa olla lainkaan.

Edellä lasketussa taulukossa on kolme alle viiden suuruista odotettua frekvenssiä eli 3/10=30 % kaikista. Tämä on liikaa.

Esimerkissäni voin luontevasti yhdistää mielipiteitä (erittäin tyytymätön ja tyytymätön yhteen sekä erittäin tyytyväinen ja tyytyväinen yhteen). Näin taulukko pienenee 5×2 taulukosta 3×2 taulukoksi, jolloin taulukon lukumäärät kasvavat. Esimerkissäni mielipiteiden yhdistäminen korjaa tilanteen eikä alle viiden suuruisia odotettuja frekvenssejä ole kuin 1 (1/6 eli 17 % kaikista).

Khiin neliö Χ²

Havaitun ja hypoteettisen taulukon eroa voin mitata khiin neliö -testimuuttujalla. Khiin neliön merkkinä käytetään kreikkalaista isoa khi-kirjainta varustettuna yläindeksillä 2 (Χ²). Khi-kirjaimen sijasta voin käyttää myös isoa X-kirjainta. En selitä tässä khiin neliö -testimuuttujan laskemista, mutta halutessasi voit lukea testimuuttujan laskemisesta ja khiin neliö -jakaumasta artikkelista Khiin neliö -testi – lisätietoa.

Khiin neliö -testimuuttujan tiedetään noudattavan likimain khiin neliö -todennäköisyysjakaumaa, jonka tarkka muoto riippuu vapausasteluvusta df (degrees of freedom). Vapausasteita on (rivien määrä-1)×(sarakkeiden määrä-1). Esimerkiksi 2×2 taulukossa df=(2-1)×(2-1)=1. Tämän voi ymmärtää helposti: Jos taulukon rivi- ja sarakesummat ovat tiedossa, niin ainoastaan yhden arvon voi asettaa 2×2 taulukkoon vapaasti; muut arvot määräytyvät tämän perusteella.

Khiin neliö -testi

Khiin neliö -testissä määritetään khiin neliö -todennäköisyysjakaumasta niin kutsuttu p-arvo, joka vastaa seuraavaan kysymykseen: Kuinka todennäköistä on saada havaitun suuruinen tai vielä suurempi khiin neliö -testimuuttujan arvo ilman riippuvuutta tai eroa perusjoukossa? Mitä pienempi p-arvo on, sitä enemmän riippuvuuden tai eron yleistäminen perusjoukkoon saa tukea. Toisaalta, mitä suurempi p-arvo on, sitä todennäköisemmin havaitut erot johtuvat otantavirheestä.

Vakiintuneen tavan mukaan alle 0,050 (5,0 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa olevan riippuvuuden tai eron puolesta.

Excelissä voin laskea p-arvon CHISQ.TEST (CHINELIÖ.TESTI) -funktiolla. Funktiolle annetaan kaksi argumenttia: viittaus havaittuihin frekvensseihin ja viittaus odotettuihin frekvensseihin. Excel 2007 ja vanhemmissa versioissa funktion nimi on CHITEST (CHITESTI). Vanha funktion nimi toimii edelleen myös uudemmissa versioissa.

Khiin neliö -testin raportointi

Esimerkissäni mielipiteiden yhdistämisen jälkeen laskettu khiin neliö -testi antaa p-arvoksi 0,005. Tuloksen voin raportoida esimerkiksi seuraavasti: Miesten ja naisten mielipiteissä on merkitsevää eroa (khiin neliö -testin p-arvo 0,005). Tieteellisessä tekstissä tulos on hyvä raportoida vieläkin täsmällisemmin ilmoittamalla vapausasteiden lukumäärä (df) ja khiin neliö -testimuuttujan arvo: Khiin neliö -testin mukaan miesten (n=63) ja naisten (n=19) mielipiteissä on eroa: df=2; Χ²(2)=10,59; p=0,005.

Excel laskee puolestasi

Onneksi jaksoit lukea tänne asti. Kaikkea ei tarvitse laskea alusta alkaen. Voit käyttää rakentamiani taulukkopohjia otantavirhe.xlsx, joihin voit kirjoittaa tai kopioida oman taulukkosi lukumäärät. Tämän jälkeen näet suoraan odotetut frekvenssit, khiin neliön Χ², vapausasteiden lukumäärän df ja p-arvon. Sinun tehtäväksesi jää tulosten raportointi.

Jos haluat laskea khiin neliö -testin SPSS:llä, niin lue artikkeli SPSS: Khiin neliö -testi.

Yhteenveto

Jos otoksesta lasketussa ristiintaulukoinnissa näkyy ryhmien välisiä eroja, niin

  • Mitä pienempi p-arvo, sitä enemmän saan tukea väitteelle, että myös perusjoukossa on ryhmien välisiä eroja. Yleensä alle 0,050 (5,0 %) suuruista p-arvoa pidetään varsin hyvänä tukena väitteelle, että myös perusjoukossa on ryhmien välisiä eroja.
  • mitä isompi p-arvo, sitä todennäköisemmin otoksessa havaitut erot johtuvat pelkästään otantavirheestä.

Vaihtoehtoja khiin neliö -testille

Khiin neliö -testi soveltuu käytettäväksi erityisesti kahden kategorisen muuttujan tapauksessa. Jos toinen muuttujista on mielipideasteikollinen, niin Mann-Whitney U -testi (kahden ryhmän vertailu) tai Kruskal-Wallis -testi (useamman ryhmän vertailu) ovat suositeltavampia testimenetelmiä. Tämän artikkelin esimerkissä toisena muuttujana on mielipideasteikollinen muuttuja. Esimerkissä tuleekin ongelmia khiin neliö -testin käyttöedellytysten kanssa. Mann-Whitney U -testissä ei tule ongelmia käyttöedellytysten kanssa. Valitettavasti Excelissä ei ole toimintoa Mann-Whitney U -testin tai Kurskal-Wallis -testin laskemiseen.