Avainsana-arkisto: Kahden riippuvan otoksen vertailu

SPSS: Kahden riippuvan otoksen vertailu

Päivitetty 27.4.2016

Jos SPSS ei ole käytettävissäsi, niin voit suorittaa kahden riippuvan otoksen t-testin myös Excelillä. Lue lisää artikkelistani Kahden riippuvan otoksen vertailu.

Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss19.pdf.

Jos haluan tutkia vaikuttaako alkoholi miesten reaktioaikaan, niin voin toimia seuraavasti:

  • valitsen otoksen miehiä
  • mittaan otoksen miehille reaktioajan ilman alkoholin vaikutusta
  • mittaan otoksen miehille reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kullekin miehelle reaktioaikojen eron
  • lasken reaktioaikojen erojen keskiarvon (samaan tulokseen päädyn, jos lasken reaktioaikojen keskiarvojen eron).

Kumpaakin mittausta voin pitää omana otoksenaan, mutta kyseessä ovat toisistaan riippuvat otokset (kyseessähän ovat samat miehet). Riippuvia otoksia voidaan kutsua myös parittaisiksi otoksiksi. Käytettyä tutkimusasetelmaa voidaan kutsua toistomittaukseksi (mittaukset toistetaan samoille henkilöille).

Mitä enemmän erojen keskiarvo poikkeaa nollasta sitä enemmän minulla on perusteita väittää, että alkoholia nauttineilla on eri suuruinen reaktioaika. Pieni poikkeama nollasta voi kuitenkin selittyä otantavirheellä. Otantavirheen osuus on sitä pienempi mitä suurempaa otosta käytän.

Kysymys: Miten voin tietää selittyykö erojen keskiarvon poikkeama nollasta pelkästään otantavirheellä vai onko taustalla myös alkoholin vaikutus reaktioaikaan?

Vastaus: Suoritan kahden riippuvan otoksen t-testin (myös nimitystä parittaisten otosten t-testi käytetään). T-testin tuloksena saan p-arvon. P-arvo on todennäköisyys sille, että erojen keskiarvon poikkeama nollasta selittyy pelkästään otantavirheellä. Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

  • Jos p-arvo on alle 0,050, niin eroa sanotaan tilastollisesti melkein merkitseväksi.
  • Jos p-arvo on alle 0,010, niin eroa sanotaan tilastollisesti merkitseväksi.
  • Jos p-arvo on alle 0,001, niin eroa sanotaan tilastollisesti erittäin merkitseväksi.

Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

Testin suorittamiseksi minun täytyy valita suoritanko kaksisuuntaisen vai yksisuuntaisen testin. Lisäksi minun on syytä pohtia, onko testin suorittaminen ylipäätään luotettavaa eli täyttyvätkö testin käyttöedellytykset.

Kaksisuuntainen vai yksisuuntainen testi?

Jos etukäteen ajateltuna ei ole käsitystä siitä onko erojen keskiarvo positiivinen vai negatiivinen, niin käytän kaksisuuntaista testiä.

Jos etukäteen ajateltuna vain tietyn merkkinen erojen keskiarvo tulee kyseeseen tai olen yksinomaan kiinnostunut tietyn merkkisestä erosta, niin voin käyttää yksisuuntaista testiä. Yksisuuntaisessa testauksessa pienempi poikkeama riittää tilastollisesti merkitsevään testitulokseen.

Testin käyttöedellytykset

Ensiksi tarkasteltavan muuttujan täytyy olla sellainen, että keskiarvon laskeminen on mielekästä. Tällöin myös mittausten erojen keskiarvon laskeminen on mielekästä.

Jos otoskoko on vähintään 30, niin voin käyttää testiä. Tätä pienempien otosten tapauksessa edellytetään, että erot ovat likimain normaalisti jakautuneet. Jos mitattavat muuttujat voidaan olettaa normaalijakautuneiksi, niin sitä suuremmalla syyllä myös mittausten ero voidaan olettaa normaalijakautuneeksi. Jotkin muuttujat ovat luonnostaan sellaisia, että normaalijakautuneisuus voidaan olettaa. Reaktioaika on tällainen muuttuja (useimmat ihmisen fyysisistä ja psyykkisistä ominaisuuksista noudattavat normaalijakaumaa).  Epäselvissä tapauksissa voin testata normaalijakautuneisuutta SPSS:n Explore-toiminnolla. Tästä lisää artikkelissani SPSS: Explore.

Testin laskeminen SPSS:llä

Jos aineisto on tallennettu Excel-muotoon artikkelini Tilastoaineiston tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta aineisto löytyy.
  • OK.

Seuraavassa käytän esimerkkinä aineistoa reaktioajatriippuvat.sav, joka on valmiiksi SPSS-muotoinen aineisto. Kahden riippuvan otoksen t-testin voin laskea seuraavasti:

  • Valitsen Analyze – Compare Means – Paired-Samples T Test
  • Valitsen vertailtavan parin (ensimmäisen muuttujan valitsen normaalisti ja toisen ctrl-näppäin alhaalla. Siirrän valitun parin Paired Variables -ruutuun. Toistan menettelyn jos haluan vertailla useampia muuttujapareja.
  • OK.

Tulosteina saan taulukon, jossa on molepien ryhmien keskiarvot, otoskoot ja keskihajonnat. Toisessa taulukossa on muuttujien välinen korrelaatiokerroin. Odotettavissa on yleensä iso korrelaatiokerroin, koska muuttujien arvot vastaavat pareittain toisiaan. Esimerkissämme korrelaatiokerroin 0,885 on tilastollisesti merkitsevä (p < 0,001).

Varsinaisesta parittaisen t-testin taulukosta löydän muiden muassa parien erojen keskiarvon (0,1702) ja keskeiset testin tunnusluvut: t eli testimuuttujan arvo, df eli vapausasteiden lukumäärä ja Sig. (2-tailed) eli p-arvo. Testin tuloksen voin raportoida esimerkiksi seuraavasti:

Reaktioaikojen keskiarvo ilman alkoholia 0,226 (keskihajonta = 0,025, n = 15) oli pienempi kuin keskiarvo alkoholin vaikutuksen alaisena 0,243 (keskihajonta = 0,023, n = 15). Ero osoittautui riippuvien otosten t-testillä merkitseväksi: t(14) = 5,630, p < 0,001, 2-suuntainen.

Tieteellisessä tekstissä t-testimuuttujan arvo täytyy ilmoittaa yhdessä vapausasteluvun df kanssa: t(14) = 5,630.

Huomaa, että taulukossa on myös erojen keskiarvon luottamusvälin alaraja ja yläraja. Esimerkkitapauksessa erojen keskiarvon 95 % luottamusväli on 0,01054 – 0,02350.

Mihin kahden riippuvan otoksen t-testin laskenta perustuu?

Vaikka testissä tarkastellaan kahta otosta, niin viime kädessä kyseessä on yhden keskiarvon testaaminen (erojen keskiarvo). Jos haluat tietää enemmän niin lue lisätietoa.

Muita menetelmiä kahden riippuvan otoksen vertailuun

Jos kahden riippumattoman otoksen t-testi ei tule kysymykseen, niin tarjolla on monia muita menetelmiä ryhmien välisen eron testaamiseen. Lue lisää artikkelistani Onko ryhmien välinen ero tilastollisesti merkitsevä?

Mainokset

Wilcoxon merkittyjen sijalukujen testi

Päivitetty 26.1.2013

Kahden riippuvan otoksen välisen eron merkitsevyyttä voin testata kahden riippuvan otoksen t-testillä. T-testin käyttökelpoisuus on kuitenkin kyseenalaista seuraavissa tapauksissa:

  • Otoskoko on pieni (alle 30) enkä ole varma ovatko tarkasteltavat muuttujat normaalijakautuneet perusjoukossa.
  • Tarkasteltavat muuttujat ovat mielipideasteikollisia. Jos olen sitä mieltä, että keskiarvo ei ole sopiva tunnusluku mielipideasteikolle, niin kahden riippuvan otoksen t-testi ei tule kyseeseen.

Kahden riippuvan otoksen t-testin sijasta voin käyttää Wilcoxon merkittyjen sijalukujen testiä (Wilcoxon signed rank test), jonka kohdalla ei tarvitse olettaa normaalijakautuneisuutta.

Excelissä ei ole valmista toimintoa Wilcoxon merkittyjen sijalukujen testin laskemiseen. Onneksi versiosta 18 lähtien SPSS on sisältänyt erittäin helppokäyttöisen ja havainnollisen tavan testin laskemiseen. Vaikka suorittaisitkin muut analyysit Excelissä, niin tämän testin osalta kannattaa piipahtaa SPSS:n puolella. Tämä on helppoa vaikka et olisi aiemmin SPSS:ää käyttänytkään. Jos SPSS ei ole sinulle entuudestaan tuttu, niin haluat ehkä tutustua monisteeseeni spss19.pdf.

Excel-aineiston avaaminen

Jos aineisto on tallennettu Excel-muotoon artikkelini Tilastoaineiston tallentaminen ohjeiden mukaisesti, niin voit avata sen SPSS-ohjelmaan:

  • Valitse SPSS:n käynnistyksen yhteydessä avautuvasta ikkunasta Open an existing data source ja napsauta OK. Jos olit jo ohittanut kyseisen ikkunan, niin valitse valikosta File-Open-Data.
  • Valitse avaamisen määrittelyikkunassa tiedostomuodoksi Excel.
  • Valitse avattava tiedosto.
  • Napsauta Open-painiketta, jolloin avautuu Opening Excel Data Source -valintaikkuna.
  • Valitse valintaruutu Read variable names
  • Tarkista ja vaihda tarvittaessa Worksheet ja Range -määrittelyt, jotka määrittelevät mistä taulukosta ja miltä solualueelta aineisto löytyy.
  • OK.

Muuttujien mitta-asteikon tarkistaminen

Siirry Variable View -näkymään napsauttamalla vastaavaa välilehteä SPSS-ikkunan alareunassa. Tarkista tarkasteltavien muuttujien mitta-asteikko Measure-sarakkeesta. Jos mitta-asteikko on Nominal tai Ordinal, niin vaihda asteikoksi Scale.  Testin taustaoletuksena on, että muuttuja on perimmiltään jatkuvaluonteinen. Testi sopii siitä huolimatta myös mielipideasteikoille. Esimerkiksi 5-portaisen mielipide-asteikon arvot eivät sellaisenaan ole jatkuvaluonteisia. Tässä kuitenkin riittää se, että oletetaan mielipide jatkuvavaluonteiseksi muuttujaksi, vaikka sitä mitataankin tarkkuudella 1, 2, 3, 4, 5.

Testin suorittaminen

  • Valitse valikosta Analyze – Nonparametric Tests – Related Samples. Avautuvan Nonparametric Tests: Two or More Related Samples -ikkunan yläreunassa on kolme välilehteä: Objective, Fields ja Settings.
  • Valitse Objective-välilehdeltä Automatically compare observed data to hypothesized.
  • Valitse Fields-välilehdeltä vaihtoehto Use custom field assignments, valitse tarkasteltavat kaksi muuttujaa Test Fields: -ruutuun.
  • Napsauta Run-painiketta.

Testin tulkinta

Esimerkki. Tietokoneohjelmien testaaja halusi tutkia onko uusi ohjelma nopeampi kuin vanha. Koska tietokoneohjelmalla suoritetaan erilaisia tehtäviä, niin testaaja arpoi ohjelman tyypillisten tehtävien joukosta 10 tehtävää. Kyseiset tehtävät suoritettiin kummallakin ohjelmalla ja suoritusajat mitattiin. Mittaukset löytyvät aineistosta  ohjelmat.sav (tallenna aineisto tietokoneellesi ja avaa se sen jälkeen SPSS-ohjelmaan).

Testin tulosteena saan havainnollisen tulosteen. Tulosteesta voin lukea testatun hypoteesin, testin p-arvon ja testin johtopäätöksen. Johtopäätöksen kriteerinä SPSS käyttää oletusarvoisesti merkitsevyystasoa 0,05 (nollahypoteesi hylätään, jos p-arvo on alle 0,05). Merkitsevyystason voit halutessasi vaihtaa Settings-välilehden Test Options -kohdasta.

Testattavana on nollahypoteesi: Uuden ja vanhan ohjelman suoritusaikojen erojen mediaani on 0. Kaksisuuntaisen Wilcoxon merkittyjen sijalukujen testin p-arvo on 0,011 (<0,05), joten nollahypoteesi hylätään. SPSS tarjoaa lisätietoa jos kaksoisnapsautan tulostaulukkoa. SPSS näyttää parien erotukset (Uusi-Vanha) histogrammina. Esimerkin tapauksessa yhdellä parilla on positiivinen erotus (uusi ohjelma hitaampi) ja kahdeksalla parilla on negatiivinen erotus (uusi ohjelma nopeampi). Lisäksi yhdessä parissa suoritusajat ovat samat.

Kuvion alapuolelle SPSS tulostaa taulukon, joka sisältää testiin liittyviä tunnuslukuja. Voit tarvita joitain näistä luvuista, jos organisaatiosi raportointiohje niin vaatii.

Kahden riippuvan otoksen vertailu

Päivitetty 27.4.2016

Jos haluan tutkia vaikuttaako alkoholi miesten reaktioaikaan, niin voin toimia seuraavasti:

  • valitsen otoksen miehiä
  • mittaan otoksen miehille reaktioajan ilman alkoholin vaikutusta
  • mittaan otoksen miehille reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kullekin miehelle reaktioaikojen eron
  • lasken reaktioaikojen erojen keskiarvon (samaan tulokseen päädyn, jos lasken reaktioaikojen keskiarvojen eron).

Kumpaakin mittausta voin pitää omana otoksenaan, mutta kyseessä ovat toisistaan riippuvat otokset (kyseessähän ovat samat miehet). Riippuvia otoksia voidaan kutsua myös parittaisiksi otoksiksi.

Mitä enemmän erojen keskiarvo poikkeaa nollasta sitä enemmän minulla on perusteita väittää, että alkoholia nauttineilla on eri suuruinen reaktioaika. Pieni poikkeama nollasta voi kuitenkin selittyä otantavirheellä. Otantavirheen osuus on sitä pienempi mitä suurempaa otosta käytän.

Kysymys: Miten voin tietää selittyykö erojen keskiarvon poikkeama nollasta pelkästään otantavirheellä vai onko taustalla myös alkoholin vaikutus reaktioaikaan?

Vastaus: Suoritan kahden riippuvan otoksen t-testin (myös nimitystä parittaisten otosten t-testi käytetään). T-testin tuloksena saan p-arvon. P-arvo on todennäköisyys sille, että erojen keskiarvon poikkeama nollasta selittyy pelkästään otantavirheellä. Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

Vakiintuneen tavan mukaan alle 0,050 (5,0 %) suuruista p-arvoa pidetään riittävänä näyttönä perusjoukossa olevan eron puolesta.

Testin suorittamiseksi minun täytyy valita suoritanko kaksisuuntaisen vai yksisuuntaisen testin. Lisäksi minun on syytä pohtia, onko testin suorittaminen ylipäätään luotettavaa eli täyttyvätkö testin käyttöedellytykset.

Mitä pienempi p-arvo sitä enemmän saan tukea sille, että erojen keskiarvo poikkeaa merkitsevästi nollasta.

Kaksisuuntainen vai yksisuuntainen testi

Jos etukäteen ajateltuna ei ole käsitystä siitä onko erojen keskiarvo positiivinen vai negatiivinen, niin käytän kaksisuuntaista testiä.

Jos etukäteen ajateltuna vain tietyn merkkinen erojen keskiarvo tulee kyseeseen tai olen yksinomaan kiinnostunut tietyn merkkisestä erosta, niin voin käyttää yksisuuntaista testiä. Yksisuuntaisessa testauksessa pienempi poikkeama riittää tilastollisesti merkitsevään testitulokseen.

Testin käyttöedellytykset

Ensiksi tarkasteltavan muuttujan täytyy olla sellainen, että keskiarvon laskeminen on mielekästä. Tällöin myös mittausten erojen keskiarvon laskeminen on mielekästä.

Jos otoskoko on vähintään 30, niin voin käyttää testiä. Tätä pienempien otosten tapauksessa edellytetään, että erot ovat likimain normaalisti jakautuneet. Jos mitattavat muuttujat voidaan olettaa normaalijakautuneiksi, niin sitä suuremmalla syyllä myös mittausten ero voidaan olettaa normaalijakautuneeksi. Jotkin muuttujat ovat luonnostaan sellaisia, että normaalijakautuneisuus voidaan olettaa. Reaktioaika on tällainen muuttuja (useimmat ihmisen fyysisistä ja psyykkisistä ominaisuuksista noudattavat normaalijakaumaa).  Epäselvissä tapauksissa voin yrittää arvioida normaalijakautuneisuutta otosten erojen jakauman perusteella (voin käyttää esimerkiksi histogrammia tai ruutu- ja janakaaviota).

Testin p-arvon laskeminen Excelillä

Voin laskea testin p-arvon Excelin funktiolla =T.TEST(otos1;otos2;suuntaisuus;tyyppi)

  • otos1: viittaus ensimmäiseen otokseen
  • otos2: viittaus toiseen otokseen
  • suuntaisuus: 2 kaksisuuntaiselle testille, 1 yksisuuntaiselle testille
  • tyyppi: 1 riippuvien otosten t-testille

Suomenkielisessä Excelissä funktion nimi on T.TESTI.

Funktion nimeä vaihdettiin Excelin versioon 2010. Aikasemmissa versioissa funktion nimi on TTEST (TTESTI). Vanha funktion nimi toimii edelleen uudemmissa Excelin versioissa.

Esimerkki. Tiedostossa reaktioajat.xlsx on kuvitteellinen esimerkkiaineisto reaktioajoista. Ensimmäisen mittauksen reaktioajat ovat soluissa B2:B16 ja toisen otoksen reaktioajat soluissa C2:C16. P-arvon laskemiseen (yksisuuntainen) voidaan käyttää funktiota =T.TEST(B2:B16;C2:C16;2;1)

Esimerkkiaineiston p-arvo on pienempi kuin 0,001, mikä tarkoittaa erojen keskiarvon tilastollisesti merkitsevää poikkeamaa nollasta.

Testin tulosten raportointi

Tuloksen voin raportoida monellakin tavalla. Tärkeintä on, että otosten keskiarvot, keskihajonnat, otoskoko ja testin p-arvo ovat näkyvillä. Esimerkiksi:

Reaktioaikojen keskiarvo ilman alkoholia 0,226 (keskihajonta = 0,025, n = 15) oli pienempi kuin keskiarvo alkoholin vaikutuksen alaisena 0,243 (keskihajonta = 0,023, n = 15). Ero osoittautui riippuvien otosten t-testillä merkitseväksi: t(14) = 5,621, p < 0,001, 2-suuntainen.

Tieteellisessä tekstissä t-testimuuttujan arvo täytyy ilmoittaa yhdessä vapausasteluvun df kanssa: t(14) = 5,621. Testimuuttujan arvon ja vapausasteluvun saat Excelin analyysityökaluilla (katso reaktioajat.xlsx) tai käyttämällä valmista laskentapohjaa tiedostossa otantavirhe.xlsx.

SPSS

Jos haluat suorittaa testauksen SPSS:llä, niin lue artikkelini SPSS: Kahden riippuvan otoksen vertailu.

Muita menetelmiä kahden riippuvan otoksen vertailuun

Jos keskiarvo ei sovellu tarkasteltavalle muuttujalle, niin tarjolla on kaksi hyvää vaihtoehtoa:

  1. Jos tarkasteltava muuttuja on kaksiarvoinen (joko/tai), niin voit käyttää McNemar-testiä. Voit esimerkiksi testata ostohalukkuuden eroa ennen ja jälkeen tuote-esittelyn. Excelissä ei ole valmista toimintoa testin laskemiseen. SPSS soveltuu hyvin testin laskemiseen.
  2. Jos otoskoko on alle 30 etkä ole varma normaalijakautuneisuudesta, niin riippuvien otosten t-testin sijasta voit käyttää Wilcoxon merkittyjen sijalukujen testiä. Excelissä ei ole valmista toimintoa testin laskemiseen. SPSS soveltuu hyvin testin laskemiseen.

Kahden riippumattoman otoksen vertailu

Miesten reaktioaikaa voin tutkia myös toisenlaisella tutkimusasetelmalla:

  • valitsen kaksi toisistaan riippumatonta otosta miehiä
  • ensimmäisen otoksen miehille mittaan reaktioajan ilman alkoholin vaikutusta
  • toisen otoksen miehille mittaan reaktioajan sen jälkeen kun he ovat nauttineet tarkoin mitatun määrän alkoholia
  • lasken kummallekin otokselle reaktioaikojen keskiarvon.

Tässä asetelmassa otokset ovat toisistaan riippumattomat ja vertailuun täytyy käyttää kahden riippumattoman otoksen t-testiä.

Usein kysyttyä

Kysymys: Olen laskenut keskiarvot ja keskihajonnat, mutta alkuperäinen aineisto ei ole Excelissä. Voinko silti laskea kahden otoksen t-testin.

Vastaus: Voit. Käytä Exceliin laatimaani laskentapohjaa otantavirhe.xlsx. Syötä laskentapohjaan otoskoko, erojen keskiarvo ja erojen keskihajonta.

Kysymys: Voinko laskea virhemarginaalin erojen keskiarvolle?

Vastaus: Kyllä. Käytä Exceliin laatimaani laskentapohjaa otantavirhe.xlsx. Syötä laskentapohjaan otoskoko, erojen keskiarvo ja erojen keskihajonta.