Avainsana-arkisto: Normaalijakautuneisuuden testaaminen

SPSS: Explore

Päivitetty 29.11.2015

Keskiarvoja koskevassa testauksessa oletetaan, että otoskeskiarvot ovat normaalijakautuneet. Jos otoskoko on vähintään 30, niin asiaa ei tarvitse erikseen testata. Pienillä otoksilla normaalijakautuneisuus kannattaa testata SPSS:n Exlore-toiminnolla. Itse asiassa tällöin testataan muuttujan normaalijakautuneisuus, joka takaa myös otoskeskiarvojen normaalijakautuneisuuden pienilläkin otoksilla. Explore-toiminto on muutenkin hyödyllinen määrällisen muuttujan tarkastelussa, koska samalla saadaan keskiarvon luottamusväli, histogrammi ja ruutu- ja janakaavio (boxplot).

Seuraavassa käytän esimerkkinä valmiiksi SPSS-muotoista aineistoa reaktioajat.sav.

  • Valitsen Analyze – Descriptive Statistics – Explore
  • Siirrän ryhmittelevät muuttujat Factor List -ruutuun (esimerkissäni Alkoholi).
  • Siirrän muuttujat, joita haluan tarkastella Dependent List -ruutuun (esimerkissäni Reaktioaika)
  • Napsautan Plots-painiketta
  • Valitsen oletusvalintojen lisäksi Histogram ja Normality plots with tests
  • Pääsen pois Plots-ikkunasta Continue-painikkeella
  • Valitsen OK.

Tuloksena saat muiden muassa Descriptives-taulukon, johon on laskettu keskeisiä tunnuslukuja sekä keskiarvon luottamusväli (95 % Confidence Interval for Mean). Descriptives-taulukon alapuolella on Tests of Normality -taulukko.

Kolmogorov-Smirnov -testi ja Shapiro-Wilk -testi testaavat normaalijakautuneisuutta. Nollahypoteesina on molemmissa ”Muuttuja noudattaa normaalijakaumaa”. Testien p-arvot löytyvät taulukon Sig. -sarakkeista. Molempien ryhmien (Ei-alkoholia ja Alkoholia) kohdalla nollahypoteesi jää voimaan, koska p-arvot ovat suurempia kuin 0,05. Jos Kolmogorov-Smirnov -testi ja Shapiro-Wilk -testi johtavat erilaisiin päätelmiin, niin minä olisin taipuvainen käyttämään testejä, joissa ei tarvitse olettaa normaalijakautuneisuutta.

SPSS tulostaa muuttujan jakaumia esittävät histogrammit sekä useita normaalijakautuneisuuden arviointiin tarkoitettuja kuvioita. Erityisen havainnollinen on ruutu- ja janakaavio (boxplot).

Ruutu- ja janakaavion ruudun alareuna vastaa alaneljännestä ja yläreuna yläneljännestä. Ruudun sisällä oleva vaakaviiva vastaa mediaania. Janojen päissä olevat vaakaviivat kuvaavat pienintä ja suurinta arvoa. Jos muuttujalla on arvoja, jotka sijaitsevat yli 1,5 ruudun korkeuden verran ruudun yläpuolella tai alapuolella, niin ne esitetään omina pisteinään (tällöin janojen päissä olevat vaakaviivat eivät tietenkään kuvaa pienintä ja suurinta arvoa). Yli 1,5 ruudun korkeuden verran ruudun yläpuolella tai alapuolella olevia havaintoja kutsutaan poikkeaviksi (outlier). Poikkeavien havaintojen vieressä on havainnon rivinumero aineistossa.

Mainokset